Materials Transactions Online

Materials Transactions, Vol.55 No.05 (2014) pp.754-757
© 2014 The Japan Institute of Metals and Materials

Internal Friction of an Ag-In-Yb Icosahedral Quasicrystal

Kenma Handa1, 2, Yeong-Gi So3, Yasushi Kamimura1, Ryuji Tamura2 and Keiichi Edagawa1

1Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
2Department of Materials Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan
3Department of Materials Science and Engineering, Akita University, Akita 010-8502, Japan

Internal friction has been measured for an Ag-In-Yb Tsai-type icosahedral (i-) quasicrystal to investigate an energy-dissipation mechanism by phason relaxation, possibly operating in quasicrystals. A fairly large peak of the magnitude Q-1 ≈ 0.022 was observed, which was shown to be of the thermally-activated relaxation type. The frequency factor and activation enthalpy were evaluated to be 1020 s−1 and 2.6 × 10-19 J (1.6 eV), respectively. The observed peak was analyzed on the assumption that it is of phason-origin. The magnitude of the phonon-phason coupling constant was estimated to be 0.008μ (μ: shear modulus), based on the model of the phonon-phason elastodynamics previously proposed. This value is comparable to those previously reported for Mackay-type i-phases such as i-Al-Pd-Mn and i-Al-Cu-Fe.

(Received 2013/12/13; Accepted 2014/02/27; Published 2014/04/25)

Keywords: icosahedral quasicrystal, internal friction, phason relaxation, silver-indium-ytterbium alloy

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. P. J. Steinhardt and S. Ostlund: The Physics of Quasicrystals, (World Scientific, Singapore, 1987) pp. 1-136.
  2. J. E. S. Socolar, T. C. Lubensky and P. J. Steinhardt: Phys. Rev. B 34 (1986) 3345-3360.
  3. D. Levine, T. C. Lubensky, S. Ostlund, S. Ramaswamy and P. J. Steinhardt: Phys. Rev. Lett. 54 (1985) 1520-1523.
  4. P. Bak: Phys. Rev. B 32 (1985) 5764-5772.
  5. T. C. Lubensky, S. Ramaswamy and J. Toner: Phys. Rev. B 32 (1985) 7444-7452.
  6. M. de Boissieu, R. Currat and S. Francoual: Quasicrystals, ed. by T. Fujiwara and Y. Ishii, (Elsevier Science B. V., Oxford, 2007) pp. 107-170.
  7. S. B. Rochal and V. L. Lorman: Phys. Rev. B 66 (2002) 144204.
  8. M. Feuerbacher, M. Weller, J. Diehl and K. Urban: Philos. Mag. Lett. 74 (1996) 81-88.
  9. Y. G. So, S. Sato, K. Edagawa, T. Mori and R. Tamura: Phys. Rev. B 80 (2009) 224204.
  10. Y. G. So, S. Sato, K. Edagawa and R. Tamura: Philos. Mag. 91 (2011) 2820-2827.
  11. V. Elser and C. L. Henley: Phys. Rev. Lett. 55 (1985) 2883-2886.
  12. C. L. Henley and V. Elser: Philos. Mag. B 53 (1986) L59-L66.
  13. M. Audier and P. Guyot: Extended Icosahedral Structures, (Academic Press, San Diego, CA, 1989) pp. 1-36.
  14. H. Takakura, J. Guo and A. P. Tsai: Philos. Mag. Lett. 81 (2001) 411-418.
  15. J. Q. Guo and A. P. Tsai: Philos. Mag. Lett. 82 (2002) 349-352.
  16. V. Elser: Phys. Rev. B 32 (1985) 4892-4898.
  17. M. de Boissieu, S. Francoual, Y. Kaneko and T. Ishimasa: Phys. Rev. Lett. 95 (2005) 105503.
  18. M. Widom: Philos. Mag. Lett. 64 (1991) 297-305.
  19. J. Schreuer, W. Steurer, T. A. Lograsso and D. Wu: Philos. Mag. Lett. 84 (2004) 643-653.
  20. M. de Boissieu: private communication.
  21. W.-J. Zhu and C. L. Henley: Europhys. Lett. 46 (1999) 748-754.
  22. K. Edagawa: Philos. Mag. Lett. 85 (2005) 455-462.
  23. K. Edagawa and Y. G. So: Philos. Mag. 87 (2007) 77-95.


© 2014 The Japan Institute of Metals and Materials
Comments to us :