Materials Transactions Online

Materials Transactions, Vol.55 No.01 (2014) pp.99-105
© 2014 The Japan Institute of Metals and Materials

Application of Harmonic Structure Design to Biomedical Co-Cr-Mo Alloy for Improved Mechanical Properties

Choncharoen Sawangrat1, Osamu Yamaguchi1, Sanjay Kumar Vajpai2 and Kei Ameyama1

1Department of Mechanical Engineering, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu 525-8577, Japan
2Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Japan

Harmonic structure is a recently introduced concept for material microstructure design. It is essentially a bimodal microstructure in which deliberately introduced structural heterogeneity has a specific order: interconnected network of ultra-fine grained (UFG) regions, called “shell area”, and coarse-grained regions called “core area”. Such microstructural features dictate a unique set of properties to the Harmonic-structured materials. The present paper deals with the application of harmonic structure design to biomedical Co-Cr-Mo alloys for improved mechanical properties. In the present work, it has been demonstrated that full density Co-Cr-Mo alloy compacts with harmonic structure can be successfully prepared by controlled mechanical milling followed by spark plasma sintering of the pre-alloyed powders at 1323 K for 3.6 ks. Sintered compacts exhibited an excellent combination of strength and ductility. Moreover, it has been also shown that the mechanical properties depend strongly on the volume fraction of the inter-connected three-dimensional network of fine-grained regions, i.e., shell volume fraction. In addition, the plastic deformation of harmonic structure Co-Cr-Mo alloy also led to α-FCC to ε-HCP allotropic transformation. Therefore, the application of harmonic structure design leads to the new generation microstructure of biomedical Co-Cr-Mo alloys, which demonstrates outstanding mechanical properties compared to conventional materials.

(Received 2013/07/10; Accepted 2013/08/26; Published 2013/12/25)

Keywords: cobalt chromium molybdenum powder, severe plastic deformation, harmonic structure, mechanical properties

PDF(Free)PDF (Free) Table of ContentsTable of Contents

REFERENCES

  1. L. Shi, D. O. Northwood and Z. Cao: J. Mater. Sci. 28 (1993) 1312-1316.
  2. G. Mani, M. D. Feldman, D. Patel and C. M. Agrawal: Biomaterials 28 (2007) 1689-1710.
  3. R. V. Marrey, R. Burgermeistera, R. B. Grishabera and R. O. Ritchieb: Biomaterials 27 (2006) 1988-2000.
  4. C. Suryanarayana: Prog. Mater. Sci. 46 (2001) 1-184.
  5. F. Sánchez-De Jesús, A. M. Bolarín-Miró, G. Torres-Villaseñor, C. A. Cortés-Escobedo and J. A. Betancourt-Cantera: J. Mater. Sci: Mater. Med. 21 (2010) 2021-2026.
  6. X. Sauvage, G. Wildeb, S. V. Divinski, Z. Horita and R. Z. Valiev: Mater. Sci. Eng. A 540 (2012) 1-12.
  7. W. C. Rodrigues, L. R. Broilo, L. Schaeffer, G. Knörnschild and F. R. M. Espinoza: Powder Tech. 206 (2011) 233-238.
  8. Y. Wang, M. Chen, F. Zhou and E. Ma: Nature 419 (2002) 912-915.
  9. Z. Lee, D. B. Witkin, V. Radmilovic, E. J. Lavernia and S. R. Nutt: Mater. Sci. Eng. A 410-411 (2005) 462-467.
  10. G. Dirras, J. Gubicza, S. Ramtani, Q. H. Bui and T. Szilagyi: Mater. Sci. Eng. A 527 (2010) 1206-1214.
  11. H. Fujiwara, S. Takarae and K. Ameyama: The 2nd International Symposium on Steel Science, (ISSS, 2009) pp. 269-272.
  12. T. Sekiguchi, K. Ono, H. Fujiwara and K. Ameyama: Mater. Trans. 51 (2010) 39-45.
  13. H. Fujiwara, H. Tanaka, M. Nakatani and K. Ameyama: Mater. Sci. Forum 638-642 (2010) 1790-1795.
  14. H. Fujiwara, M. Nakatani, T. Yoshida, Z. Zhang and K. Ameyama: Mater. Sci. Forum 584-586 (2008) 55-60.
  15. H. Fujiwara, R. Akada, Y. Yoshita and K. Ameyama: Mater. Sci. Forum 503-504 (2006) 227-232.
  16. H. Fujiwara, R. Akada, A. Noro, Y. Yoshita and K. Ameyama: Mater. Trans. 49 (2008) 90-96.
  17. T. B. Massalski, H. Okamoto, P. R. Subramanian and L. Kacprzak: Binary Alloy Phase Diagram, 2nd ed., (ASTM International, Materials Park, Ohio, 1990) p. 1180.
  18. J. R. Davis: Heat Resistance Materials, (ASM International Handbook Committee, United States of America, 1997) pp. 272-279.
  19. C. F. Tang, F. Pan, X. H. Qu, C. C. Jia, B. H. Duan and X. B. He: J. Mater. Process. Technol. 204 (2008) 111-116.
  20. S. Louidi, F.-Z. Bentayeb, W. Tebib, J. J. Suñol, L. Escoda and A. M. Mercier: Mater. Chem. Phys. 132 (2012) 761-765.
  21. J. Y. Huang, Y. K. Wu and H. Q. Ye: Acta Mater. 44 (1996) 1201-1209.
  22. J. Sort, N. M. Mateescu, J. Nogues, S. Surinach and M. D. Baro: J. Metast. Nanocryst. Mater. 12 (2002) 126-133.
  23. K. Yamanaka, M. Mori and A. Chiba: Mater. Sci. Eng. A 528 (2011) 5961-5966.
  24. S. Kurosu, H. Matsumoto and A. Chiba: Mater. Lett. 64 (2010) 49-52.
  25. K. Yoda, S. Suyalatu, A. Takaichi, N. Nomura, Y. Tsutsumi, H. Doi, S. Kurosu, A. Chiba, Y. Igarashi and T. Hanawa: Acta Biomater. 8 (2012) 2856-2862.
  26. Y. Koizumi, S. Suzuki, K. Yamanaka, B. S. Lee, K. Sato, Y. Li, S. Kurosu, H. Matsumoto and A. Chiba: Acta Mater. 61 (2013) 1648-1661.
  27. P. Huang and H. F. Lopez: Mater. Lett. 39 (1999) 244-248.
  28. S. Cai, M. R. Daymond and Y. Ren: Mater. Sci. Eng. A 580 (2013) 209-216.


[JIM HOME] [JOURNAL ARCHIVES]

© 2014 The Japan Institute of Metals and Materials
Comments to us : editjt@jim.or.jp