Materials Transactions Online

Materials Transactions, Vol.54 No.09 (2013) pp.1592-1596
© 2013 The Japan Institute of Metals and Materials

Atomistic Design of High Strength Crystalline-Amorphous Nanocomposites

Shin Yamamoto1, Yun-Jiang Wang2, Akio Ishii1 and Shigenobu Ogata1, 2

1Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan
2Center for Elements Strategy Initiative for Structural Materials (ESISM), Kyoto University, Sakyo, Kyoto 606-8501, Japan

There is a long-standing demand for materials which could simultaneously demonstrate multiple promising properties like high strength, good ductility and toughness. In this study, a three-dimensional bulk nanocomposite material which is composed of nanoscale crystalline metal and metallic glass is revealed to present high strength and potentially good ductility by molecular dynamics. A critical high strength is achieved by varying the ratio between crystalline and amorphous phase. The critical strength is revealed to be higher than that expected from the rule of mixture. The mechanism underlying the occurrence of critical strength in the nanocomposite is elucidated by the interaction between dislocation and matrix of amorphous phase. Our concept could guide the engineers to design more advanced bulk nanostructured materials.

(Received 2013/03/01; Accepted 2013/04/05; Published 2013/08/25)

Keywords: nanocomposite, strength, ductility, molecular dynamics

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. M. A. Meyers, A. Mishra and D. J. Benson: Prog. Mater. Sci. 51 (2006) 427.
  2. T. Zhu and J. Li: Prog. Mater. Sci. 55 (2010) 710.
  3. C. C. Koch, I. A. Ovid’ko, S. Seal and S. Veprek: Structural Nanocrystalline Materials: Fundamentals and Applications, (Cambridge University Press, Cambridge, 2007).
  4. X. X. Huang, N. Hansen and N. Tsuji: Science 312 (2006) 249.
  5. E. O. Hall: Proc. Phys. Soc. London B 64 (1951) 747.
  6. N. J. Petch: J. Iron Steel Inst. 174 (1953) 25.
  7. Y. M. Wang, J. Li, A. V. Hamza and T. W. Barbee Jr.: Proc. Natl. Acad. Sci. U.S.A. 104 (2007) 11155.
  8. J. Y. Kim, D. Jang and J. R. Greer: Adv. Funct. Mater. 21 (2011) 4550.
  9. D. C. Jang and J. R. Greer: Nat. Mater. 9 (2010) 215.
  10. J. Li: Model. Simul. Mater. Sci. Eng. 11 (2003) 173.
  11. R. C. Reed: The Superalloys: Fundamentals and Applications, (Cambridge University Press, New York, 2006).
  12. Y. J. Wang, A. Ishii and S. Ogata: Phys. Rev. B 84 (2011) 224102.
  13. Y. J. Wang, A. Ishii and S. Ogata: Maters. Trans. 53 (2012) 156.
  14. Y. J. Wang, A. Ishii and S. Ogata: Acta Mater. 61 (2013) 3866.
  15. S. Nosé: Mol. Phys. 52 (1984) 255.
  16. W. G. Hoover: Phys. Rev. A 31 (1985) 1695.
  17. A. C. Lund and C. A. Schuh: Acta Mater. 51 (2003) 5399.
  18. M. Parrinello and A. Rahman: J. Appl. Phys. 52 (1981) 7182.
  19. E. A. Stern, R. W. Siegel, M. Newville, P. G. Sanders and D. Haskel: Phys. Rev. Lett. 75 (1995) 3874.
  20. L. Lu, Y. F. Shen, X. H. Chen, L. H. Qian and K. Lu: Science 304 (2004) 422.
  21. L. Lu, X. Chen, X. Huang and K. Lu: Science 323 (2009) 607.
  22. T. Zhu, J. Li, A. Samanta, H. G. Kim and S. Suresh: Proc. Natl. Acad. Sci. U.S.A. 104 (2007) 3031.


© 2013 The Japan Institute of Metals and Materials
Comments to us :