Materials Transactions Online

Materials Transactions, Vol.54 No.09 (2013) pp.1562-1569
© 2013 The Japan Institute of Metals and Materials

Bulky Averaged Microscopic Information for ECAP-Processed Cu Using Accelerator-Based Gamma-Ray-Induced Positron Annihilation Spectroscopy and Neutron Diffraction

Toshihiro Ishibashi1, Yo Tomota1, Satoshi Sugaya1, Hiroyuki Toyokawa2, Tetsuya Hirade3, Zenji Horita4, 5 and Hiroshi Suzuki6

1Graduate School of Science and Engineering/Frontier Research Center for Applied Atomic Science, Ibaraki University, Hitachi 316-8511, Japan
2National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
3Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
4WPI, International Institute for Carbon-Neutral Energy Research (WPI-12CNER), Kyushu University, Fukuoka 819-0395, Japan
5Department of Materials Science, Faculty of Engineering, Kyusyu University, Fukuoka 819-0395, Japan
6Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan

Bulky averaged microstructural parameters such as vacancy density, texture and intergranular stress for 99.99% Cu subjected to equal-channel angular pressing (ECAP) were investigated using accelerator-based gamma-ray-induced positron annihilation spectroscopy (AIPAS) and neutron diffraction. The Doppler-broadening parameter S for the AIPAS positron annihilation peaks increased after the first ECAP cycle and then decreased slightly with additional ECAP cycles. When the samples were annealed, the S value for the sample subjected to eight ECAP cycles was found to decrease at a lower temperature than that for the sample subjected to one ECAP cycle. The texture and intergranular stresses generated by ECAP were determined by neutron diffraction analyses. Changes in full width at half maximum and intensity of the (111) and (200) neutron diffraction peaks monitored in situ during annealing indicated the early onset of recrystallization in the sample subjected to eight ECAP cycles. These bulky averaged data show good agreement with both local scanning electron microscopy/electron backscatter diffraction observations and the results of mechanical tests.

(Received 2013/03/01; Accepted 2013/05/20; Published 2013/08/25)

Keywords: equal-channel angular pressing, copper, accelerator-based gamma-ray-induced positron annihilation spectroscopy, neutron diffraction, electron back scatter diffraction

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langdon: Acta Mater. 45 (1997) 4733.
  2. R. Z. Valiev, R. K. Islangaliev and I. V. Alexandrow: Prog. Mater. Sci. 45 (2000) 103.
  3. Á. Révész, T. Ungár, A. Borbérly and J. Lendvai: Nanostruct. Mater. 7 (1996) 779.
  4. S. Li, I. J. Beyerlein, D. J. Alexander and S. V. Vogel: Acta Mater. 53 (2005) 2111.
  5. W. Q. Cao, C. F. Gu, E. V. Pereloma and C. H. J. Davies: Mater. Sci. Eng. A 492 (2008) 74.
  6. L. H. Su, C. Lu, L. Z. He, L. C. Zhang, P. Guagliardo, A. K. Tieu, S. N. Samarin, J. F. Williams and H. J. Li: Acta Mater. 60 (2012) 4218.
  7. F. A. Selim, D. P. Wells, J. F. Harmon, J. Kwofie, G. Erikson and T. Roney: Radiat. Phys. Chem. 68 (2003) 427.
  8. F. A. Selim, D. P. Wells, J. F. Harmon and J. Williams: J. Appl. Phys. 97 (2005) 113540.
  9. D. P. Wells, A. W. Hunt, L. Tchelidze, J. Kumar, K. Smith, S. Thompson, F. Selim, J. Williams, J. F. Harmon, S. Maloy and A. Roy: Nucl. Instrum. Methods Phys. Res. A 562 (2006) 688.
  10. P. G. Xu, Y. Tomota, H. Suzuki, T. Suzuki, S. Machiya and F. X. Yin: Mater. Trans. 49 (2008) 2033-2039.
  11. S. Matthies, J. Pehl, H. R. Wenk, L. Lutterotti and S. V. Vogel: J. Appl. Cryst. 38 (2005) 462.
  12. T. Tomida, M. Wakita, M. Yasuyama, S. Sugaya, Y. Tomota and S. C. Vogel: Acta Mater. 61 (2013) 2828.
  13. H. Toyokawa, T. Hayakawa, T. Shizuma, R. Hajima, K. Masuda and H. Ohgaki: Nucl. Instrum. Methods Phys. Res. A 608 (2009) S41.
  14. K. Way (ed.): At. Data Nucl. Data Tables 19 (1977) 299.
  15. R. H. Milburn: Phys. Rev. Lett. 10 (1963) 75.
  16. H. Saito, Y. Nagashima, T. Kurihara and T. Hyodo: Nucl. Instrum. Methods Phys. Res. A 487 (2002) 612.
  17. X. Molodova, G. Gottstein, M. Winning and R. J. Hellmig: Mater. Sci. Eng. A 460-461 (2007) 204.
  18. M. Morinaga and Y. Murata: Unpublished work presented at the Bulk-Metal Project Meeting (2007).
  19. P. Kirkegaard, J. V. Olsen, M. Eldrup and N. J. Pedersen: Risø-R-1652(EN).
  20. H. Ohkubo, Z. Tang, Y. Nagai, M. Hasegawa, T. Tawara and M. Miritani: Mater. Sci. Eng. A 350 (2003) 95.
  21. M. Haouaoui, I. Karaman and H. J. Maier: Acta Mater. 54 (2006) 5477.
  22. G. G. Yapici, I. J. Beyerlein, I. Karaman and C. N. Tome: Acta Mater. 55 (2007) 4603.
  23. T. Suzuki, Y. Tomota, M. Isaka, A. Moriai, N. Minakawa and Y. Morii: ISIJ Int. 44 (2004) 1426.


© 2013 The Japan Institute of Metals and Materials
Comments to us :