Materials Transactions Online

Materials Transactions, Vol.54 No.07 (2013) pp.1110-1119
© 2013 The Japan Institute of Metals and Materials

Effect of Carbide Size Distribution on the Impact Toughness of Tempered Martensitic Steels with Two Different Prior Austenite Grain Sizes Evaluated by Instrumented Charpy Test

Shigeto Takebayashi1, 2, Kohsaku Ushioda1, Naoki Yoshinaga3 and Shigenobu Ogata2

1Technical Research & Development Bureau, Nippon Steel & Sumitomo Metal Corporation, Futtsu 293-8511, Japan
2Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
3Kimitsu R&D, Technical Research & Development Bureau, Nippon Steel & Sumitomo Metal Corporation, Kimitsu 299-1141, Japan

The effect of tempering temperature on the impact toughness of 0.3 mass% carbon martensitic steels with prior austenite grain (PAG) size of about 6 and 60 µm was investigated. Instrumented Charpy impact test (ICIT) was used to evaluate the impact toughness. The tempering temperature of 723 K gives the largest difference in the Charpy impact energy at room temperature between the specimens with two different PAG sizes, where the finer PAG specimen shows higher impact energy at room temperature (RT). The other tempering temperatures do not show a significant difference as compared with that shown among the 723 K tempered specimens. Investigation of the test temperature dependence of Charpy impact energy in the 723 K tempered steels shows a steep transition at around 200 K for the 6 µm PAG specimen, while it shows a continuous slow transition in a wide range of temperatures for the 60 µm PAG specimen. ICIT waveform analysis of these steels shows that the fracture propagation energy mainly controls the temperature dependence of the impact energy, while the fracture initiation energy stays nearly constant against the variation of the test temperature. The carbide size distribution in these two specimens was investigated by secondary electron microscope (SEM) and transmission electron microscope (TEM). The 60 µm PAG specimen shows distribution of coarser carbide than does the 6 µm PAG specimen, which seems to give rise to the observed difference between them in the Charpy impact energy and the other properties of impact fracture.

(Received 2013/02/28; Accepted 2013/04/25; Published 2013/06/25)

Keywords: martensitic steel, carbide, impact toughness, instrumented Charpy test, impact waveform

PDF(Free)PDF (Free) Table of ContentsTable of Contents

REFERENCES

  1. K. Ushioda and M. Takahashi: Bull. Iron Steel Inst. Jpn. 11 (2006) 779-783.
  2. G. Krauss: Metall. Mater. Trans. A 32 (2001) 861-877.
  3. J. W. Morris Jr., C. S. Lee and Z. Guo: ISIJ Int. 43 (2003) 410-419.
  4. P. Bowen, S. G. Druce and J. F. Knott: Acta Metall. 34 (1986) 1121-1131.
  5. Y. Kimura, T. Inoue, F. Yin and K. Tsuzaki: Science 320 (2008) 1057-1060.
  6. Y. Kimura, T. Inoue, F. Yin, O. Sitdikov and K. Tsuzaki: Scr. Mater. 57 (2007) 465-468.
  7. W. J. Hui, H. Dong, S. I. Chen, M. Q. Wang and Y. Q. Weng: Proc. Symp. Ultrafine Grained Steels (ISUGS2001), (2001) pp. 232-235.
  8. R. O. Ritchie, B. Francis and W. L. Server: Metall. Mater. Trans. A 7 (1976) 831-838.
  9. R. O. Ritchie and R. L. Horn: Metall. Mater. Trans. A 9 (1978) 831-841.
  10. K. Kawasaki, T. Chiba, H. Koga and T. Yamazaki: Tetsu-to-Hagane 73 (1987) 2290-2297.
  11. K. Kawasaki, T. Chiba, H. Koga and T. Yamazaki: Tetsu-to-Hagane 74 (1988) 342-349.
  12. T. Swarr and G. Krauss: Metall. Mater. Trans. A 7 (1976) 41-48.
  13. C. J. McMahon Jr. and M. Cohen: Acta Metall. 13 (1965) 591-604.
  14. R. O. Ritchie, F. Knott and J. R. Rice: J. Mech. Phys. Solids 21 (1973) 395-410.
  15. T. Tsuchiyama and S. Takaki: ISIJ Int. 39 (1999) 202-208.
  16. D. Francois: Transactions of the 15th Int. Conf. on Structure Mechanics and Reactor Technology, (1999) pp. 1-19.
  17. T. Kobayashi: Eng. Fract. Mech. 19 (1984) 49-65.
  18. J. P. Tronskar, M. A. Mannan and M. O. Lai: Eng. Fract. Mech. 69 (2002) 321-338.
  19. T. Kobayashi, K. Takai and H. Maniwa: Trans. ISIJ 7 (1967) 116-125.
  20. H. Ma, L. Zhu and Z. Wang: Fatigue Fract. Eng. Mater. Struct. 12 (1996) 1459-1470.
  21. B. Tanguy, J. Besson, R. Piques and A. Pineau: Eng. Fract. Mech. 72 (2005) 49-72.
  22. S. Hashemi: Int. J. Press. Vessels Piping 85 (2008) 879-884.
  23. P. R. Sreenivasan, S. K. Ray, S. L. Mannan and P. Rodriguez: J. Nucl. Mater. 228 (1996) 338-345.
  24. S. Maropoulos, S. Karagiannis and N. Ridley: J. Mater. Sci. 42 (2007) 1309-1320.
  25. R. P. M. Proctor and H. W. Paxton: Trans. ASM 62 (1969) 989-999.
  26. R. A. Grange: Metall. Trans. 2 (1971) 65-78.
  27. T. Hanamura and K. Nagai: ISIJ Int. 44 (2004) 610-617.
  28. F. J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, (Pergamon) pp. 270-274.
  29. K. Ushioda, H. G. Suzuki, H. Komatsu and K. Esaka: J. Japan Inst. Metals 59 (1995) 373-380.
  30. A. Reguly, T. R. Strohaeker, G. Krauss and D. K. Matlock: Metall. Mater. Trans. A 35 (2004) 153-162.
  31. N. Fujino, Y. Matsumoto and Y. Maehara: Tetsu-to-Hagane 67 (1981) 2039-2048.
  32. F. Kurosawa, I. Taguchi and R. Matsumoto: J. Japan Inst. Metals 43 (1979) 1068-1077.
  33. F. Kurosawa, I. Taguchi and M. Tanino: Bull. Japan Inst. Metals 20 (1981) 377-384.
  34. S. Morita, T. Kobayashi, M. Niinomi, H. Toda and T. Akabori: Tetsu-to-Hagane 91 (2005) 485-492.
  35. E. Lucon: Int. J. Fract. 153 (2008) 1-14.
  36. K. Gunji and T. Okamoto: Tetsu-to-Hagane 61 (1975) 884-898.
  37. S. Morito, H. Tanaka, R. Konishi, T. Furuhara and T. Maki: Acta Mater. 51 (2003) 1789-1799.
  38. S. Morito, X. Huang, T. Maki and N. Hansen: Acta Mater. 54 (2006) 5323-5331.
  39. S. Morito, H. Yoshida, T. Maki and X. Huang: Mater. Sci. Eng. A 438-440 (2006) 237-240.
  40. T. Maki, K. Tsuzaki and I. Tamura: Trans. ISIJ 20 (1980) 207-214.
  41. C. S. Roberts: Trans. AIME 197 (1953) 203-204.
  42. A. R. Marder and G. Krauss: Trans. ASM 60 (1967) 651-660.
  43. M. J. Van Genderen, M. Isac, A. Böttger and E. J. Mittemeijer: Metall. Mater. Trans. A 28 (1997) 545-561.
  44. G. Krauss: Steels Processing, Structure, and Performance, (ASM International, Material Parks, Ohio, USA) pp. 362-380.
  45. M. Serrano, F. J. Perosanz and J. Lapena: Int. J. Press. Vessels Piping 77 (2000) 605-612.
  46. K. Angamuthu, B. Guha and D. R. G. Achter: Eng. Fract. Mech. 64 (1999) 417-432.
  47. A. Fernández-Canteli, A. Argüelles, J. Viña, M. Ramulu and A. S. Kobayashi: Compos. Sci. 62 (2002) 1315-1325.
  48. J. Pietikainen: Scand. J. Metall. 34 (2005) 1-6.
  49. L. H. Zhu, Q. X. Zhao, H. C. Gu and Y. S. Lu: Eng. Fract. Mech. 64 (1999) 327-336.
  50. A. E. Lord and D. N. Beshers: Acta Metall. 14 (1966) 1659-1672.
  51. S. Takebayashi, T. Kunieda, N. Yoshinaga, K. Ushioda and S. Ogata: ISIJ Int. 50 (2010) 875-882.
  52. G. R. Speich: Trans. Metall. Soc. AIME 212 (1969) 2553-2564.
  53. B. S. Lement, B. L. Averbach and M. Cohen: Trans. ASM 47 (1955) 291-320.
  54. S. Yusa, T. Hara and K. Tsuzaki: J. Japan Inst. Metals 64 (2000) 1230-1238.
  55. A. H. Cotrel: Trans. Metall. Soc. AIME 212 (1958) 192-202.
  56. D. Hull: Acta Metall. 8 (1960) 11-18.
  57. C. J. McMahon and M. Cohen: Acta Metall. 13 (1965) 591-604.
  58. E. Smith: Acta Metall. 14 (1966) 985-989.
  59. J. R. Rice and R. Thomson: Philos. Mag. 29 (1974) 73-97.
  60. P. F. Thomason: Acta Metall. Mater. 41 (1993) 2127-2134.
  61. N. J. Petch: Acta Metall. 34 (1986) 1387-1393.
  62. T. Furuhara, K. Kikumoto, H. Saito, T. Sekine, T. Ogawa, S. Morito and T. Maki: ISIJ Int. 48 (2008) 1038-1045.
  63. J. Gurland: Acta Metall. 20 (1972) 735-741.
  64. S. Nagakura and M. Toyoshima: Trans. JIM 20 (1979) 100-110.
  65. S. Nagakura, T. Suzuki and M. Kusunoki: Trans. JIM 22 (1981) 699-709.
  66. S. Nagakura, Y. Hirotsu, M. Kusunoki, T. Suzuki and Y. Nakamura: Metall. Trans. A 14 (1983) 1025-1031.
  67. D. A. Curry and J. F. Knott: Metal Sci. November (1978) 511-514.
  68. P. Bowen, S. G. Druce and J. F. Knott: Acta Metall. 35 (1987) 1735-1746.


[JIM HOME] [JOURNAL ARCHIVES]

© 2013 The Japan Institute of Metals and Materials
Comments to us : editjt@jim.or.jp