Materials Transactions Online

Materials Transactions, Vol.54 No.04 (2013) pp.484-492
© 2013 The Japan Institute of Metals and Materials

Enthalpies of Solution in Ti-X (X = Mo, Nb, V and W) Alloys from First-Principles Calculations

Tokuteru Uesugi, Syo Miyamae and Kenji Higashi

Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531, Japan

The effects of solute X (Mo, Nb, V and W) on the phase stability of β-Ti alloys were studied from first-principles calculations. The first-principles calculations yielded solution enthalpies for hexagonal close-packed (hcp)-Ti35X1 and hcp-X35Ti1 and body-centered cubic (bcc)-Ti26X1 and bcc-X26Ti1 solid solution alloys. The enthalpy curves for the α (hcp)- and β (bcc)-phases of Ti-X alloys were described as a function of the X concentration by using the calculated solution enthalpies and sub-regular solution model. While the enthalpies of the α-phases increased with increasing concentrations of Mo, Nb, V and W, the enthalpies of the β-phases decreased with increasing concentrations. This is consistent with the experimental results, showing that Mo, Nb, V and W are β-stabilizers. The β-stabilizing strength of solute elements in Ti alloys is gauged using the experimental critical concentration. We found a good linear correlation between the experimental critical concentration and the theoretical metastable equilibrium concentration at which the enthalpy of the α-phase is equal to that of the β-phase. The metastable equilibrium concentration decreased with the increasing lattice stability of the bcc structure with reference to hcp structure.

(Received 2012/11/28; Accepted 2013/01/10; Published 2013/03/25)

Keywords: first principles, titanium alloys, β-stability, enthalpy of solution, enthalpy of mixing

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. M. Niinomi: Metall. Mater. Trans. A 33 (2002) 477-486.
  2. T. Ozaki, H. Matsumoto, S. Watanabe and S. Hanada: Mater. Trans. 45 (2004) 2776-2779.
  3. D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato and T. Yashiro: Mat. Sci. Eng. A 243 (1998) 244-249.
  4. M. Niinomi, T. Hattori, K. Morikawa, T. Kasuga, A. Suzuki, H. Fukui and S. Niwa: Mater. Trans. 43 (2002) 2970-2977.
  5. N. Sakaguch, M. Niinomi and T. Akahori: Mater. Trans. 45 (2004) 1113-1119.
  6. S. Miyazaki, H. Y. Kim and H. Hosoda: Mat. Sci. Eng. A 438-440 (2006) 18-24.
  7. H. Y. Kim, Y. Ikehara, J. I. Kim, H. Hosoda and S. Miyazaki: Acta Mater. 54 (2006) 2419-2429.
  8. H. Y. Kim, H. Satoru, J. I. Kim, H. Hosoda and S. Miyazaki: Mater. Trans. 45 (2004) 2443-2448.
  9. M. Morinaga, M. Kato, T. Kamimura, M. Fukumoto, I. Harada and K. Kubo: Proc. 7th Int. Conf. on Titanium, Titanium 1992, Science and Technology, San Diego, CA, USA, (1992), pp. 276-283.
  10. M. Abdel-Hady, K. Hinoshita and M. Morinaga: Scr. Mater. 55 (2006) 477-480.
  11. T. Saito : Science 300 (2003) 464-467.
  12. D. Raabe, B. Sander, M. Friak, D. Ma and J. Neugebauer: Acta Mater. 55 (2007) 4475-4487.
  13. C. Berne, A. Pasturel, M. Sluiter and B. Vinet: Phys. Rev. Lett. 83 (1999) 1621-1623.
  14. Y. Wang, S. Curtarolo, C. Jiang, R. Arroyave, T. Wang, G. Ceder, L. Q. Chen and Z. K. Liu: Calphad 28 (2004) 79-90.
  15. M. H. F. Sluiter: Calphad 30 (2006) 357-366.
  16. L. G. Wang, M. Sob and Z. Zhang: J. Phys. Chem. Solids 64 (2003) 863-872.
  17. P. J. Craievich, M. Weinert, J. M. Sanchez and R. E. Watson: Phys. Rev. Lett. 72 (1994) 3076-3079.
  18. T. Uesugi, M. Kohyama and K. Higashi: Phys. Rev. B 68 (2003) 184103.
  19. N. Chetty, M. Weinert, T. S. Rahman and J. W. Davenport: Phys. Rev. B 52 (1995) 6313-6326.
  20. R. G. Hennig, D. R. Trinkle, J. Bouchet, S. G. Srinivasan, R. C. Albers and J. W. Wilkins: Nat. Mater. 4 (2005) 129-133.
  21. C. Wolverton and V. Ozolins: Phys. Rev. B 73 (2006) 144104.
  22. M. H. F. Sluiter and Y. Kawazoe: Model. Simul. Mater. Sci. Eng. 8 (2000) 221-232.
  23. M. H. F. Sluiter and Y. Kawazoe: Europhys. Lett. 57 (2002) 526-532.
  24. V. Ozoliņš and M. Asta: Phys. Rev. Lett. 86 (2001) 448-451.
  25. T. Uesugi, M. Kohyama, M. Kohzu and K. Higashi: Mater. Trans. 42 (2001) 1167-1171.
  26. H. Ikehata, N. Nagasako, T. Furuta, A. Fukumoto, K. Miwa and T. Saito: Phys. Rev. B 70 (2004) 174113.
  27. T. Uesugi, M. Kohyama and K. Higashi: Mater. Sci. Forum 426-432 (2003) 599-604.
  28. T. Uesugi, Y. Takigawa and K. Higashi: Mater. Trans. 46 (2005) 1117-1121.
  29. C. Y. Wu, Y. H. Xin, X. F. Wang and J. G. Lin: Solid State Sci. 12 (2010) 2120-2124.
  30. Q. M. Hu, S. J. Li, Y. L. Hao, R. Yang, B. Johansson and L. Vitos: Appl. Phys. Lett. 93 (2008) 121902.
  31. M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark and M. C. Payne: J. Phys. Condens. Matter 14 (2002) 2717-2744.
  32. P. Hohenberg and W. Kohn: Phys. Rev. 136 (1964) B864-B871.
  33. W. Kohn and L. J. Sham: Phys. Rev. 140 (1965) A1133-A1138.
  34. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais: Phys. Rev. B 46 (1992) 6671-6687.
  35. D. Vanderbilt: Phys. Rev. B 41 (1990) 7892-7895.
  36. C. L. Fu and K. M. Ho: Phys. Rev. B 28 (1983) 5480-5486.
  37. H. J. Monkhorst and J. D. Pack: Phys. Rev. B 13 (1976) 5188-5192.
  38. T. H. Fischer and J. Almlof: J. Phys. Chem. 96 (1992) 9768-9774.
  39. N. Saunders and A. P. Miodownik: CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, (Pergamon, New York, 1998).
  40. L. Kaufman: Calphad 25 (2001) 141-161.
  41. P. J. Spencer: Calphad 32 (2008) 1-8.
  42. Z. K. Liu: J. Phase Equilib. Diff. 30 (2009) 517-534.
  43. L. Kaufman: Acta Metall. 7 (1959) 575-587.
  44. L. Kaufman, E. V. Clougherty and R. J. Weiss: Acta Metall. 11 (1963) 323-335.
  45. A. T. Dinsdale: Calphad 15 (1991) 317-425.
  46. K. Santhy and K. C. H. Kumar: Intermetallics 18 (2010) 1713-1721.
  47. K. C. H. Kumar, P. Wollants and L. Delaey: Calphad 18 (1994) 71-79.
  48. J. S. L. Leach: Nature 213 (1967) 587-588.
  49. P. J. Bania: JOM 46 (1994) 16-19.
  50. A. I. Antipov and V. N. Moiseev: Met. Sci. Heat Treat. 39 (1997) 499-503.
  51. R. Boyer, G. Welsch and E. W. Collings: Materials Properties Handbook: Titanium Alloys, (ASM International, Ohio, 1994).
  52. X. H. Min, K. Tsuzaki, S. Emura, T. Nishimura and K. Tsuchiya: Mater. Trans. 52 (2011) 1611-1616.
  53. L. Kaufman and M. Cohen: Prog. Metal Phys. 7 (1958) 165-246.
  54. K. Ishida: J. Alloy. Compd. 220 (1995) 126-131.
  55. M. Cohen: Trans. ASM 41 (1949) 35-94.
  56. K. S. Jepson, A. R. G. Brown and J. A. Gray: The Science, Technology and Application of Titanium, ed. by R. I. Jaffee and N. E. Promisel, (Pergamon Press, Oxford, 1970) pp. 677-690.


© 2013 The Japan Institute of Metals and Materials
Comments to us :