Materials Transactions Online

Materials Transactions, Vol.54 No.01 (2013) pp.96-101
© 2013 The Japan Institute of Metals

Dependence of Dose and He on Irradiation-Hardening of Fe-Ion Irradiated Fe-8Cr Model Alloy

C. Liu1, N. Hashimoto1, S. Ohnuki1, M. Ando2 and K. Shiba2

1Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan
2Tokai Laboratory, JAEA, Tokai, Ibaraki 319-1195, Japan

An Fe-8Cr model alloy was irradiated in the TIARA facility with 10.5 MeV Fe3+ ions and/or 1.05 MeV He+ ions at 100-300°C to 0.1-10 dpa. Irradiated specimens were characterized using transmission electron microscopy and a nano-indentation technique. Visible defect clusters were not detectable by TEM for doses below ∼0.1 dpa, while spatially heterogeneous dislocation loop rafts were visible for a dose of 10 dpa in single ion irradiation. The loop rafts formation was impeded in dual ion irradiation with the implantation of helium atoms at 10 dpa. Ion irradiation led to increases in hardening with increasing doses. Further, log-log plots of irradiation hardening at 100, 250 and 300°C, which fit the dose dependence of the irradiation hardening using ΔH ∝ (dpa)n, indicate that the decreases of n values with lower temperatures are due to a tendency towards saturation in the irradiation hardening.

(Received 2012/06/25; Accepted 2012/10/04; Published 2012/12/25)

Keywords: ferritic steel, ion-irradiation, irradiation hardening, microstructure evolution

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. M. L. Hamilton, D. S. Gelles and P. L. Gardner: ASTM STP 1175, (ASTM, Philadelphia, 1993) pp. 545-557.
  2. B. N. Singh, H. Trinkaus and S. I. Golubov: Encycl. Mater. Sci. Technol. (2001) 7957-7972.
  3. Y. Katoh, M. Ando and A. Kohyama: J. Nucl. Mater. 323 (2003) 251-262.
  4. S. Hamada, Y. Miwa, D. Yamaki, Y. Katano, T. Nakazawa and K. Noda: J. Nucl. Mater. 258-263 (1998) 383-387.
  5. M. Ando, E. Wakai, T. Sawai, H. Tanigawa, K. Furuya, S. Jitsukawa, H. Takeuchi, K. Oka, S. Ohnuki and A. Kohyama: J. Nucl. Mater. 329-333 (2004) 1137-1141.
  6. W. D. Oliver and G. M. Pharr: J. Mater. Res. 7 (1992) 1564.
  7. C. Liu, C. Yu, N. Hashimoto, S. Ohnuki, M. Ando, K. Shiba and S. Jitsukawa: J. Nucl. Mater. 417 (2011) 270-273.
  8. T. S. Byun and K. Farrell: J. Nucl. Mater. 326 (2004) 86-96.
  9. Y. Satoh, I. Ishida, T. Yoshiie and M. Kiritani: J. Nucl. Mater. 155-157 (1988) 443-448.
  10. T. R. Allen, J. Gan, J. I. Cole, M. K. Miller, J. T. Busby, S. Shutthanandan and S. Thevuthasan: J. Nucl. Mater. 375 (2008) 26-37.
  11. S. J. Zinkle and B. N. Singh: J. Nucl. Mater. 351 (2006) 269-284.
  12. J. L. Brimhall and B. Mastel: Radiat. Eff. 3 (1970) 203.
  13. V. K. Sikka and J. Moteff: J. Nucl. Mater. 46 (1973) 217.
  14. J. Marian, B. D. Wirth, R. Schaublin, J. M. Perlado and T. Diaz de la Rubia: J. Nucl. Mater. 307-311 (2002) 871-875.
  15. R. E. Stoller and S. J. Zinkle: J. Nucl. Mater. 283-287 (2000) 349-352.
  16. E. Wakai, N. Hashimoto, J. P. Robertson, S. Jitsukawa, T. Sawai and A. Hishinuma: J. Nucl. Mater. 283-287 (2000) 435-439.
  17. S. J. Zinkle and Y. Matsukawa: J. Nucl Mater. 329-333 (2004) 88-96.
  18. H. Tanigawa, S. Jitsukawa, A. Hishinuma, M. Ando, Y. Katoh, A. Kohyama and T. Iwai: J. Nucl. Mater. 283-287 (2000) 470-473.


© 2013 The Japan Institute of Metals
Comments to us :