Materials Transactions Online

Materials Transactions, Vol.53 No.09 (2012) pp.1699-1705
© 2012 The Japan Institute of Metals

Segregation of Alkali and Alkaline Earth Metals at Σ11(113)[110] Grain Boundary in Aluminum from First-Principles Calculations

Tokuteru Uesugi and Kenji Higashi

Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531, Japan

The grain boundary segregation energies of Mg, Na, Ca, K and Sr at a symmetric tilt Σ11(113)[110] grain boundary were investigated in aluminum using the first-principles calculation. The relationship between the grain boundary segregation energies and the volume size factors were examined to understand the role of elastic strain energy in the grain boundary segregation energy. The grain boundary segregation energy decreased with the increase in the volume size factor. It has been explained that the solute atom larger in size than Al, which stores greater strain energy in the bulk, prefers the looser site at the grain boundary plane rather than in the bulk, to release the elastic strain energy. Furthermore, on the basis of the Rice-Wang model, the effects of grain boundary segregation on the embrittlement at the grain boundary were studied. The embrittlement potency indicates that the Mg, Na, Ca, K and Sr atoms serve as embrittler in the grain boundary.

(Received 2012/03/21; Accepted 2012/07/03; Published 2012/08/25)

Keywords: first principles, grain boundary embrittlement, grain boundary segregation energy, volume size factor, Rice-Wang model

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. J. A. Wert and J. B. Lumsden: Scr. Metall. 19 (1985) 205-209.
  2. K. Horikawa, S. Kuramoto and M. Kanno: Acta Mater. 49 (2001) 3981-3989.
  3. S. P. Lynch: Scr. Mater. 47 (2002) 125-129.
  4. T. Kobayashi, M. Niinomi and K. Degawa: J. JILM 37 (1987) 816-823.
  5. X. Liu, X. Wang, J. Wang and H. Zhang: J. Phys. Condens. Matter 17 (2005) 4301-4308.
  6. G. H. Lu, A. Suzuki, A. Ito, M. Kohyama and R. Yamamoto: Philos. Mag. Lett. 81 (2001) 757-766.
  7. G. H. Lu, Y. Zhang, S. Deng, T. Wang, M. Kohyama, R. Yamamoto, F. Liu, K. Horikawa and M. Kanno: Phys. Rev. B 73 (2006) 224115.
  8. T. Uesugi and K. Higashi: Mater. Sci. Forum 654-656 (2010) 942-945.
  9. W. T. Geng, A. J. Freeman and G. B. Olson: Mater. Trans. 47 (2006) 2113-2114.
  10. M. Yamaguchi, M. Shiga and H. Kaburaki: Mater. Trans. 47 (2006) 2682-2689.
  11. M. Yuasa and M. Mabuchi: Mater. Trans. 52 (2011) 1369-1373.
  12. R. Z. Wang, S. Tanaka and M. Kohyama: Mater. Trans. 53 (2012) 140-146.
  13. J. R. Rice and J. S. Wang: Mater. Sci. Eng. A 107 (1989) 23-40.
  14. M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark and M. C. Payne: J. Phys. Condens. Matter 14 (2002) 2717-2744.
  15. P. Hohenberg and W. Kohn: Phys. Rev. 136 (1964) B864-B871.
  16. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais: Phys. Rev. B 46 (1992) 6671-6687.
  17. N. Troullier and J. L. Martins: Phys. Rev. B 43 (1991) 1993-2006.
  18. D. Vanderbilt: Phys. Rev. B 41 (1990) 7892-7895.
  19. T. H. Fischer and J. Almlof: J. Phys. Chem. 96 (1992) 9768-9774.
  20. D. McLean: Grain Boundaries in Metals (Clarendon Press, Oxford, 1957) pp. 116-149.
  21. A. P. Sutton and R. W. Balluffi: Interface in Crystalline Materials, (Oxford, Clarendon Press, 1995).
  22. T. Uesugi and K. Higashi: J. Mater. Sci. 46 (2011) 4199-4205.
  23. J. P. Hirth and J. Lothe: Theory of Dislocations, second edition (Wiley, New York, 1982) p. 839.
  24. J. D. Eshelby: J. Appl. Phys. 25 (1954) 255-261.
  25. J. Friedel: Adv. Phys. 3 (1954) 446-507.
  26. H. W. King: J. Mater. Sci. 1 (1966) 79-90.
  27. T. Uesugi, M. Kohyama and K. Higashi: Phys. Rev. B 68 (2003) 184103.
  28. T. Uesugi, M. Kohyama and K. Higashi: Mater. Sci. Forum 426-432 (2003) 599-603.
  29. J. Kameda and C. J. McMahon: Metall. Mater. Trans. A 11 (1980) 91-101.
  30. M. Yamaguchi: Metall. Mater. Trans. A 42 (2011) 319-329.
  31. A. A. Griffith: Phil. Trans. Roy. Soc. A 221 (1921) 163-198.
  32. G. R. Irwin: J. Appl. Mech. 24 (1957) 361-364.
  33. E. Orowan: Rep. Prog. Phys. 12 (1949) 185-232.
  34. M. L. Jokl, V. Vitek and C. J. McMahon: Acta Metall. 28 (1980) 1479-1488.
  35. J. P. Hirth and J. R. Rice: Metall. Trans. A 11 (1980) 1501-1511.


© 2012 The Japan Institute of Metals
Comments to us :