Materials Transactions Online

Materials Transactions, Vol.53 No.07 (2012) pp.1226-1233
© 2012 The Thermoelectrics Society of Japan

Electronic Transports for Thermoelectric Applications on IV-VI Semiconductors

Akihiro Ishida1, Yutaro Sugiyama1, Hirokazu Tatsuoka1, Tomoki Ariga2, Mikio Koyano2 and Sadao Takaoka3

1Faculty of Engineering, Shizuoka University, Hamamatsu 432-8561, Japan
2School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), Nomi 923-1292, Japan
3Department of Physics, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan

Seebeck effect, Peltier effect, Thomson effect, electronic thermal conductivity, Hall effect, and Nernst effect are described on the basis of electronic conduction theory, taking account of effective mass anisotropy, nonparabolicity in E-k relation, and temperature dependent band gap. It is shown that the temperature dependence of the band gap does not modify the basic equations for the Seebeck coefficient, thermal conductivity, and Nernst coefficient. In narrow gap semiconductors, existence of minority carriers significantly enhances the electronic thermal conductivity, owing to the multiple carrier transport known as bipolar diffusion. Calibration coefficient γ for the Hall effect (RH = - γ /en) is increased by nonparabolicity in the E-k relation. Nernst coefficient gives useful information on scattering properties of the materials.

(Received 2011/11/29; Accepted 2012/03/02; Published 2012/06/25)

Keywords: thermoelectric transport, Seebeck effect, Nernst effect, Boltzmann equation, IV-VI material

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. T. C. Harman, P. J. Taylor, D. L. Spears and M. F. Walsh: J. Electron. Mater. 29 (2000) L1.
  2. G. J. Snyder and E. S. Toberer: Nature Mater. 7 (2008) 105.
  3. J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka and G. J. Snyder: Science 321 (2008) 554.
  4. A. Ishida, D. Cao, S. Morioka, M. Veis, Y. Inoue and T. Kita: Appl. Phys. Lett. 92 (2008) 182105.
  5. A. Ishida, T. Yamada, D. Cao, Y. Inoue, M. Veis and T. Kita: J. Appl. Phys. 106 (2009) 023718.
  6. H. R. Shanks, P. D. Maycock, P. H. Sidles and G. C. Danielson: Phys. Rev. 130 (1963) 1743.
  7. G. A. Slack and C. Glassbrenner: Phys. Rev. 120 (1960) 782.
  8. A. Ishida, T. Yamada, T. Nakano, Y. Takano and S. Takaoka: Jpn. J. Appl. Phys. 50 (2011) 031302.
  9. J. P. Heremans, C. M. Thrush and D. T. Morelli: Phys. Rev. B 70 (2004) 115334.
  10. J. M. Ziman: Electrons and Phonons, (Oxford University Press Inc., New York, 1960) pp. 270-275.
  11. N. W. Ashcroft and N. D. Mermin: Solid State Physics, (Saunders College Publishers, 1976) pp. 256-258.
  12. L. Onsager: Phys. Rev. 37 (1931) 405.
  13. A. Ishida, Y. Sugiyama, H. Tatsuoka, A. Ito and K. Isobe: Proc. 9th European Conf. on Thermoelectrics, (2011) B_12_O.
  14. J. M. O. Zide, D. Vashaee, Z. X. Bian, G. Zeng, J. E. Bowers, A. Shakouri and A. C. Gossard: Phys. Rev. B 74 (2006) 205335.
  15. J. Martin, L. Wang, L. Chen and G. S. Nolas: Phys. Rev. B 79 (2009) 115311.
  16. Z. H. Dughaish: Physica B 322 (2002) 205.
  17. H. Preier: Appl. Phys. 20 (1979) 189.
  18. K. F. Cuff, M. R. Ellet, C. D. Kuglin and L. R. Williams: Proc. 7th Int. Conf. Phys. Semicond., (1964), p. 325.


© 2012 The Thermoelectrics Society of Japan
Comments to us :