Materials Transactions Online

Materials Transactions, Vol.53 No.03 (2012) pp.578-581
© 2012 The Japan Institute of Metals

Characteristics of Graphene-Filled Solderable Isotropically Conductive Adhesive (ICA)

Byung-Seung Yim1, Seung-Hoon Oh1, Jiwon Kim2, Jooheon Kim2 and Jong-Min Kim1

1School of Mechanical Engineering, Chung-Ang University, Seoul 156-756, Korea
2School of Chemical Engineering & Material Science, Chung-Ang University, Seoul 156-756, Korea

A new class of functionalized graphene-filled solderable isotropically conductive adhesive (ICA) has been developed using a low-melting-point alloy (LMPA) fillers. The mechanical and electrical characteristics of formulated ICAs were investigated and compared with those of three kinds of conventional ICAs filled with Ag particles. The functionalized graphene-filled solderable ICA formed good metallurgical interconnection between upper and corresponding lower electrode. The developed ICA exhibit lower electrical resistance and higher mechanical strength compared with those of conventional ICAs. In addition, the thermal conductivity was improved about 20% by adding functionalized graphene compared with that of solderable ICA without graphene.

(Received 2011/12/08; Accepted 2011/12/21; Published 2012/02/25)

Keywords: isotropically conductive adhesive (ICA), graphene, low-melting-point alloy, polymeric composites

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. T. Kuilla, S. Bhadra, D. Yao, N. H. Kim, S. Bose and J. H. Lee: Prog. Polym. Sci. 35 (2010) 1350-1375.
  2. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau: Nano Lett. 8 (2008) 902-907.
  3. S. Biswas, H. Fukushima and L. T. Drzal: Compos. Pt. A-Appl. Sci. Manuf. 42 (2011) 371-375.
  4. M. J. Yim, Y. Li, K. S. Moon, K. W. Paik and C. P. Wong: J. Adhes. Sci. Technol. 22 (2008) 1593-1630.
  5. H. K. Kim and F. G. Shi: Microelectron. J. 32 (2001) 315-321.
  6. Q. K. Tong, D. L. Markley, G. Frederickson, R. Kuder and D. Lu: Proc. 49th Electronic Components and Technology Conference, 49 (1999) pp. 347-352.
  7. Y. S. Eom, J. W. Baek, J. T. Moon, J. D. Nam and J. M. Kim: Microelectron. Eng. 85 (2008) 327-331.
  8. X. Zhang, Y. Pan, L. Shen, Q. Zheng and X. Yi: J. Appl. Polym. Sci. 77 (2000) 1044-1050.
  9. K.-S. Moon, J. Wu and C. P. Wong: IEEE Trans. Compon. Packaging Technol. 26 (2003) 375-381.
  10. B. S. Yim, J. M. Kim, S. H. Jeon, S. H. Lee, J. H. Kim, J. G. Han and M. H. Cho: Mater. Trans. 50 (2009) 2649-2655.
  11. B. S. Yim and J. M. Kim: Mater. Trans. 51 (2010) 2329-2331.
  12. W. S. Hummers and R. E. Offeman: J. Am. Chem. Soc. 80 (1958) 1339.
  13. S.-J. Pak, F.-L. Jin and J.-R. Lee: Macromol. Rapid Commun. 25 (2004) 724-727.
  14. N. V. Medhekar, A. Ramasubramaniam, R. S. Ruoff and V. B. Shenoy: ACS NANO 4 (2010) 2300-2306.
  15. A. Yu, P. Ramesh, M. E. Itkis, E. Bekyarova and R. C. Haddon: J. Phys. Chem. C 111 (2007) 7565-7569.


© 2012 The Japan Institute of Metals
Comments to us :