Materials Transactions Online

Materials Transactions, Vol.53 No.03 (2012) pp.565-570
© 2012 The Japan Institute of Metals

Bone Loss and Reduced Bone Quality of the Human Femur after Total Hip Arthroplasty under Stress-Shielding Effects by Titanium-Based Implant

Yoshihiro Noyama1, 2, Takuya Miura1, Takuya Ishimoto1, Takahiro Itaya1, Mitsuo Niinomi3 and Takayoshi Nakano1

1Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
2Department of Research and Development Division, Nakashima Medical Co., Ltd., Okayama 709-0625, Japan
3Department of Biomaterials Science, Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

The present work was aimed at clarifying the stress-shielding effect caused by hip-joint implantation into a femur by using a human cadaver with a cementless hip implant. In particular, bone quality was assessed from the standpoint of preferential c-axis orientation of biological apatite (BAp). Comparing the implanted side to the non-implanted side, a finite element analysis (FEA) indicated that artificial hip-joint implantation had a significant stress-shielding effect on the femur. The results also showed a marked decrease in the degree of preferential BAp orientation as well as bone loss in the medial-proximal femur. This is the first report showing a reduction in the degree of preferential BAp orientation due to a stress-shielding effect after artificial hip-joint implantation. Since preferential BAp orientation is an important index for determining bone mechanical function, these findings should be taken into account in future artificial hip-joint designs, especially those involving the stem component.

(Received 2011/11/21; Accepted 2011/12/19; Published 2012/02/25)

Keywords: titanium, biomaterial, total hip arthroplasty, stress-shielding effect, biological apatite (BAp), preferential orientation, bone quality, finite element analysis (FEA)

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. National Hospital Discharge Survey: 2006 annual summary, (U.S. Department of Health and Human Services, 2010).
  2. J. W. Harkess: Campbell’s Operative Orthopaedics, 11th ed., S. T. Canale and J. H. Beatty eds. (Mosby Elsevier, 2007) chapter 7.
  3. K. J. Bozic, S. M. Kurtz, E. Lau, K. Ong, T. P. Vail and D. J. Berry: J. Bone Joint Surg. Am. 91 (2009) 128-133.
  4. H. Lindahl: Injury 38 (2007) 651-654.
  5. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy: JAMA 285 (2001) 785-795.
  6. W. Bonfield and M. D. Grynpas: Nature 270 (1977) 453-454.
  7. B. Viswanath, R. Raghavan, U. Ramamurty and N. Ravishankar: Scr. Mater. 57 (2007) 361-364.
  8. T. Nakano, K. Kaibara, Y. Tabata, N. Nagata, S. Enomoto, E. Marukawa and Y. Umakoshi: Bone 31 (2002) 479-487.
  9. W. Fujitani and T. Nakano: Mater. Sci. Forum 654-656 (2010) 2216-2219.
  10. T. Nakano, T. Kan, T. Ishimoto, Y. Ohashi, W. Fujitani, Y. Umakoshi, T. Hattori, Y. Higuchi, M. Tane and H. Nakajima: Mater. Trans. 47 (2006) 2233-2239.
  11. T. A. Gruen, G. M. McNeice and H. C. Amstutz: Clin. Orthop. Rel. Res. 141 (1979) 17-27.
  12. G. Sköldenberg, H. S. G. Bodén, M. O. F. Salemyr, T. E. Ahl and P. Y. Adolphson: Acta Orthop. 77 (2006) 386-392.
  13. J. Kärrholm, C. Anderberg, F. Snorrason, J. Thanner, N. Langeland, H. Malchau and P. Herberts: J. Bone Joint Surg. Am. 84A (2002) 1651-1658.
  14. R. Huiskes, H. Weinans and B. V. Rietbergen: Clin. Orthop. Rel. Res. 274 (1992) 124-134.
  15. B. Mahaisavariya, K. Sitthiseripratip, T. Tongdee, E. L. J. Bohez, J. V. Sloten and P. Oris: Med. Eng. Phys. 24 (2002) 617-622.
  16. M. Akay and N. Aslan: J. Biomed. Mater. Res. 31 (1996) 167-182.
  17. A. W. L. Turner, R. M. Gillies, R. Sekel, P. Morris, W. Bruce and W. R. Walsh: J. Orthop. Res. 23 (2005) 705-712.
  18. T. P. Harrigan, J. A. Kareh, D. O. O’Connor, D. W. Burke and W. H. Harris: J. Orthop. Res. 10 (1992) 134-144.
  19. A. Schonning, B. Oommen, I. Ionescu and T. Conway: Comput. Aided Des. 41 (2009) 566-572.
  20. P. Adolphson: J. Arthroplasty 11 (1996) 572-581.
  21. B. Busse, M. Hahn, T. Schinke, K. Püschel, G. N. Duda and M. Amling: J. Biomed. Mater. Res. A 92 (2010) 1440-1451.
  22. T. Ishimoto, T. Nakano, M. Yamamoto and Y. Tabata: J. Mater. Sci. Mater. Med. 22 (2011) 969-976.
  23. G. X. Ni, W. W. Lu, P. K. Y. Chiu, Y. Wang, Z. Y. Li, Y. G. Zhang, B. Xu, L. F. Deng and K. D. K. Luk: J. Orthop. Res. 25 (2007) 1408-1414.
  24. T. Ishimoto, T. Nakano, Y. Umakoshi, M. Yamamoto and Y. Tabata: Phosphorus Res. Bull. 17 (2004) 77-82.
  25. T. H. Mallory and W. C. Head: Contemp. Orthop. 17 (1988) 21-28.
  26. T. P. Vail, R. R. Glisson, T. D. Koukoubis and F. Guilak: J. Biomech. 31 (1998) 619-628.
  27. Y. Noyama, N. Nagayama, T. Ishimoto, K. Kuramoto, T. Sakai, H. Yoshikawa and T. Nakano: Mater. Sci. Forum 638-642 (2010) 664-669.
  28. C. J. Hernandez and T. M. Keaveny: Bone 39 (2006) 1173-1181.
  29. J. W. Lee, T. Nakano, S. Toyosawa, Y. Tabata and Y. Umakoshi: Mater. Trans. 48 (2007) 337-342.
  30. A. Shiraishi, S. Miyabe, T. Nakano, Y. Umakoshi, M. Ito and M. Mihara: BMC Musculoskelet. Disord. 10 (2009) paper #66.


© 2012 The Japan Institute of Metals
Comments to us :