Materials Transactions Online

Materials Transactions, Vol.53 No.03 (2012) pp.559-564
© 2012 The Japan Institute of Metals

Formation of Black Ceramic Layer on Aluminum Alloy by Plasma Electrolytic Oxidation in Electrolyte Containing Na2WO4

I. J. Hwang1, K. R. Shin1, J. S. Lee2, Y. G. Ko2 and D. H. Shin1

1Department of Metallurgy and Materials Engineering, Hanyang University, Ansan 425-791, Korea
2School of Materials Science and Engineering, Yeungnam University, Gyeongsan 712-749, Korea

The formation of black ceramic layer produced by plasma electrolytic oxidation (PEO) coating has been investigated as a function of coating time. A series of PEO coatings was carried out on aluminum alloy sample in a phosphate electrolyte containing sodium tungstate (Na2WO4) with four different coating times, i.e., 20, 100, 200 and 300 s. As the coating time increased, the amount of tungsten element in the ceramic layer increased, resulting in the black ceramic layer. This phenomenon was discussed based on the electrochemical reaction assisted by micro sparks to form WO3 compounds in the ceramic oxide layer.

(Received 2011/11/28; Accepted 2011/12/19; Published 2012/02/25)

Keywords: aluminum alloy, plasma electrolytic oxidation, coating time, tungsten oxide

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. X. Nie, A. Leyland, H. W. Song, A. L. Yerokhin, S. J. Dowey and A. Matthews: Surf. Coat. Technol. 116-119 (1999) 1055-1060.
  2. J. Banhart: Prog. Mater. Sci. 46 (2001) 559-632.
  3. F. Monfort, A. Berkani, E. Matykina, P. Skeldon, G. E. Thompson and H. Habazaki: Corros. Sci. 49 (2007) 672-693.
  4. M. K. Kushwaha, A. Sil and S. Ray: J. Nanosci. Nanotechnol. 8 (2008) 4152-4158.
  5. G. Sabatini, L. Ceschini, C. Martini, J. A. Williams and I. M. Hutchings: Mater. Des. 31 (2010) 816-828.
  6. S. H. Yi, F. J. von Preissig and E. S. Kim: J. Microelectromech. Syst. 11 (2002) 293-301.
  7. T. Stoltenhoff, H. Kreye and H. J. Richter: J. Therm. Spray. Tech. 11 (2002) 542-550.
  8. Y. G. Ko, K. M. Lee, K. R. Shin and D. H. Shin: Kor. J. Met. Mater. 48 (2010) 724-729.
  9. E. Matykina, R. Arrabal, F. Monfort, P. Skeldon and G. E. Thompson: Appl. Surf. Sci. 255 (2008) 2830-2839.
  10. D. Y. Hwang, Y. M. Kim, D. Y. Park, B. Yoo and D. H. Shin: Electrochim. Acta 54 (2009) 5479-5485.
  11. J. Li, H. Cai and B. Jiang: Surf. Coat. Technol. 201 (2007) 8702-8708.
  12. I. J. Hwang, D. Y. Hwang, Y. M. Kim, B. Yoo and D. H. Shin: J. Alloy. Compd. 504S (2010) S527-S530.
  13. Y. M. Kim, D. Y. Hwang, C. W. Lee, B. Yoo and D. H. Shin: Kor. J. Met. Mater. 48 (2010) 49-56.
  14. M. R. Bayati, H. Zargar, R. Molaei, F. G. Fard, E. Kajbafvala and S. Zanganeh: Colloid. Surface A 355 (2010) 187-192.
  15. S. Namgung, Y. G. Ko, K. R. Shin and D. H. Shin: Kor. J. Met. Mater. 48 (2010) 813-818.
  16. A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews and S. J. Dowey: Surf. Coat. Technol. 122 (1999) 73-93.
  17. Y. G. Ko, S. Namgung and D. H. Shin: Surf. Coat. Technol. 205 (2010) 2525-2531.
  18. Z. Wang, L. Wu, Y. Qi and Z. Jiang: Appl. Surf. Sci. 256 (2010) 3443-3447.
  19. G. Sundararajan and L. R. Krishna: Surf. Coat. Technol. 167 (2003) 269-277.
  20. G. Lv, W. Gu, H. Chen, W. Feng, M. L. Khosa, L. Li, E. Niu, G. Zhang and S. Z. Yang: Appl. Surf. Sci. 253 (2006) 2947-2952.
  21. S. Han, W. S. Shin, M. Seo, D. Gupta, S. J. Moon and S. Yoo: Org. Electron. 10 (2009) 791-797.
  22. T. L. Barr: J. Vac. Sci. Technol. A 9 (1991) 1793-1805.
  23. S. R. Bathe and P. S. Patil: Solid State Ion. 179 (2008) 314-323.
  24. K. Oka, T. Nishiguchi, H. Kanai, K. Utani and S. Imamura: Appl. Catal. A Gen. 309 (2006) 187-191.
  25. L. O. Snizhko, A. L. Yerokhin, A. Pilkington, N. L. Gurevina, D. O. Misnyankin, A. Leyland and A. Matthews: Electrochim. Acta 49 (2004) 2085-2095.
  26. H. Y. Zheng, Y. K. Wang, B. S. Li and G. R. Han: Mater. Lett. 59 (2005) 139-142.


© 2012 The Japan Institute of Metals
Comments to us :