Materials Transactions Online

Materials Transactions, Vol.53 No.03 (2012) pp.537-545
© 2012 The Japan Institute of Metals

Crystal Grain Morphology Evolution over Ti, V, Nb and Ta Surface Heated in N2 Gas Environment to 2000°C by Filtered Concentrated Solar Beam in a Solar Furnace at PROMES-CNRS

Fernando Almeida Costa Oliveira1, Luís Guerra Rosa2, Gilles Peraudeau3, Bernard Granier3, Jorge Cruz Fernandes2, Teresa Magalhães1 and Nobumitsu Shohoji1

1LNEG-Laboratório Nacional de Energia e Geologia, LEN-Laboratório de Energia, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal
2UTL-Universidade Técnica de Lisboa, IST-Instituto Superior Técnico, Departamento de Engenharia Mecânica, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
3PROMES-CNRS, Laboratoire Procédés, Matériaux et Energie Solaire, 7, rue du Four Solaire, Odeillo 66120, France

In recent attempts of reacting d-group transition metals with N2 gas under irradiation of concentrated solar beam at temperatures around 2000°C using a standard setup with graphite specimen holder, reaction products obtained were carbo-nitrides rather than targeted nitrides on account of yield of C2 radical plume from the graphite crucible. To suppress the interference of C2 radical possessing high carbon chemical activity a(C) in nitriding d-group transition elements in solar furnace, we investigated effectiveness of inserting colour filters in the solar beam path. Two readily available colour filters, Sky blue and Medium yellow filters, were tested for this purpose. As reported in our earlier publications, XRD (X-ray diffraction) phase identification results indicated that insertion of the Sky blue filter was effective for suppressing C2 radical yield under solar beam radiation to synthesize carbo-nitride with comparatively high N content. On the other hand, insertion of the Medium yellow filter did not result in so remarkable effect for suppressing carburization as the one detected with the Sky blue filter. In the present work, aspects of microstructures developed for Ti, V, Nb and Ta surfaces heated to 2000°C under exposure to colour-filtered solar beam in N2 gas environment are reviewed. The present experimental evidences indicated that, by insertion of the Sky blue filter, appreciable crystallite grain size refinement was realized for the synthesized M(C,N) with high N content while, by insertion of the Medium yellow filter, certain extent of influence on the morphological development, that varied depending on the substrate material, was unmistakably discernible.

(Received 2011/09/27; Accepted 2011/12/06; Published 2012/02/25)

Keywords: solar furnace, colour filter, carbo-nitride, crystal grain refining, titanium, vanadium, niobium, tantalum

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. E. K. Storms: The Refractory Carbides, (Academic Press, New York, 1967).
  2. L. E. Toth: Transition Metal Carbides and Nitrides, (Academic Press, New York, 1971).
  3. E. Fromm and E. Gebhardt (ed.): Gase und Kohlenstoff in Metallen, (Springer-Verlag, Berlin, Heidelberg and New York, 1976).
  4. H. O. Pierson: Handbook of Refractory Carbides and Nitrides; Properties, Characteristics, Processing and Applications, (Noyes Publications, Westwood and New Jersey, 1996).
  5. N. Shohoji, F. Almeida Costa Oliveira, L. Guerra Rosa, G. Peraudeau, B. Granier, T. Magalhães and J. Cruz Fernandes: Mater. Trans. 52 (2011) 719-727.
  6. G. Peraudeau, F. Almeida Costa Oliveira, L. Guerra Rosa, B. Granier, J. Cruz Fernandes, T. Magalhães and N. Shohoji: Mater. Trans. 52 (2011) 2083-2090.
  7. J.-M. Badie, G. Flamant, T. Guillard and D. Laplaze: Chem. Phys. Lett. 358 (2002) 199-206.
  8. Y. S. Touloukian and D. P. DeWitt: Thermophysical Properties of Matter, Vol. 8, Thermal Radiative Properties: Nonmetallic Solids, (IFI/Plenum, New York, 1972).
  9. M. Katsura, S. Imoto and T. Sano: J. Nucl. Sci. Technol. 1 (1964) 22-26.
  10. H. Kai, M. Katsura and T. Sano: J. Nucl. Sci. Technol. 5 (1968) 43-47.
  11. M. Katsura, A. Naoumidis and H. Nickel: J. Nucl. Mater. 36 (1970) 169-179.
  12. T. Nomura, M. Katsura and T. Sano: J. Nucl. Mater. 43 (1972) 234-244.
  13. T. Nomura, M. Katsura and T. Sano: Technol. Rep. Osaka Univ. 23 (1973) 59-66.
  14. M. Katsura, N. Shohoji, T. Yato, T. Nomura and T. Sano: Thermodynamics of Nuclear Materials 1974, (IAEA (International Atomic Energy Agency), Vienna, 1975) Vol. II, pp. 347-354.
  15. L. Du, J. H. Edgar, E. A. Kenik and H. Meyer III: J. Mater. Sci. 21 (2010) 78-87.
  16. G.-H. Liu, K.-X. Chen, H.-P. Zhou, J.-J. Tian, C. Pereira and J. M. F. Ferreira: Cryst. Growth Design 6 (2006) 2404-2411.
  17. D. Carole, N. Fréty, S. Paris, D. Vrel, F. Bernard and R.-M. Marin-Ayral: Ceram. Int. 33 (2007) 1525-1534.
  18. M. W. Chase, Jr. (Ed.): NIST-JANAF Thermochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph No. 9, (Am. Chem. Soc. Am. Inst. Phys.) 1998.
  19. H. Wiesenberger, W. Lengauer and P. Ettmayer: Acta Mater. 46 (1998) 651-666.
  20. J. Cruz Fernandes, F. Almeida Costa Oliveira, B. Granier, J.-M. Badie, L. Guerra Rosa and N. Shohoji: Solar Energy 80 (2006) 1553-1560.
  21. R. Berger, W. Lengauer and P. Ettmayer: J. Alloy. Compd. 259 (1997) L9-L13.
  22. N. Shohoji, L. Guerra Rosa, J. Cruz Fernandes, D. Martínez and J. Rodríguez: Mater. Chem. Phys. 58 (1999) 172-176.
  23. L. Guerra Rosa, J. Cruz Fernandes, P. M. Amaral, D. Martínez, J. Rodríguez and N. Shohoji: Int. J. Refractory Met. Hard Mater. 17 (1999) 351-356.
  24. N. Shohoji, P. M. Amaral, J. Cruz Fernandes, L. Guerra Rosa, D. Martínez and J. Rodríguez: Mater. Trans. JIM 41 (2000) 246-249.
  25. J. Rodríguez, D. Martínez, L. Guerra Rosa, J. Cruz Fernandes, P. M. Amaral and N. Shohoji: J. Solar Energy Eng. 123 (2001) 109-116.
  26. N. Shohoji, T. Magalhães, F. Almeida Costa Oliveira, L. Guerra Rosa, J. Cruz Fernandes, J. Rodríguez, I. Cañadas and D. Martínez: Mater. Trans. 51 (2010) 381-388.


© 2012 The Japan Institute of Metals
Comments to us :