Materials Transactions Online

Materials Transactions, Vol.53 No.03 (2012) pp.524-530
© 2012 The Japan Institute of Metals

Preparation of Nanoporous Ruthenium Catalyst and Its CO Oxidation Characteristics

Masataka Hakamada, Junichi Motomura, Fumi Hirashima and Mamoru Mabuchi

Department of Energy Science and Technology, Graduate School of Energy Science, Kyoto University, Kyoto 606-8501, Japan

Anodic polarization measurements for various ruthenium (Ru) alloys revealed that hexagonal close-packed nanoporous Ru (np-Ru) can be fabricated by dealloying or selective dissolution of manganese (Mn) from Ru-Mn alloy. The pore size and specific surface area of fabricated np-Ru were 3 nm and 51.5 m2 g−1, respectively. An electron diffraction pattern suggested a polycrystalline nature of the fabricated np-Ru, which is perhaps due to the change in the crystal structure during dealloying. The oxidation of carbon monoxide (CO) was efficiently catalyzed by the np-Ru. The activation energy was 82 kJ mol−1 which is comparable to that of the polycrystalline RuO2/Ru catalyst. The present np-Ru is a novel candidate as a recoverable Ru catalyst.

(Received 2011/10/24; Accepted 2011/12/16; Published 2012/02/25)

Keywords: ruthenium, catalyst, porous materials, dealloying, CO oxidation

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. H.-I. Lee and J. M. White: J. Catal. 63 (1980) 261-264.
  2. C. H. F. Peden and D. W. Goodman: J. Phys. Chem. 90 (1986) 1360-1365.
  3. N. W. Cant, P. C. Hicks and B. S. Lennon: J. Catal. 54 (1978) 372-383.
  4. H. Over and M. Muhler: Prog. Surf. Sci. 72 (2003) 3-17.
  5. F. Gao and D. W. Goodman: Langmuir 26 (2010) 16540-16551.
  6. S. H. Joo, J. Y. Park, J. R. Renzas, D. R. Butcher, W. Huang and G. A. Somorjai: Nano Lett. 10 (2010) 2709-2713.
  7. Y. K. Kim, G. A. Morgan Jr. and J. Y. Yates Jr.: J. Phys. Chem. C 111 (2007) 3366-3368.
  8. D. W. Goodman, C. H. F. Peden and M. S. Chen: Surf. Sci. 601 (2007) L124-L126.
  9. J. Assmann, V. Narkhede, L. Khodeir, E. Löffler, O. Hinrichsen, A. Birkner, H. Over and M. Muhler: J. Phys. Chem. B 108 (2004) 14634-14642.
  10. J. Aßmann, D. Crihan, M. Knapp, E. Lundgren, E. Löffler, M. Muhler, V. Narkhede, H. Over, M. Schmid, A. P. Seitsonen and P. Varga: Angew. Chem. Int. Ed. 44 (2005) 917-920.
  11. J. T. Kiss and R. D. Gonzalez: J. Phys. Chem. 88 (1984) 892-897.
  12. S. Rakass, H. Oudghiri-Hassani, P. Rowntree and N. Abatzoglou: J. Power Sources 158 (2006) 485-496.
  13. M. S. Wainwright and D. L. Trimm: Catal. Today 23 (1995) 29-42.
  14. J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov and K. Sieradzki: Nature 410 (2001) 450-453.
  15. S. Kameoka and A. P. Tsai: Catal. Lett. 121 (2008) 337-341.
  16. A. Wittstock, B. Newmann, A. Schaefer, K. Dumbuya, C. Kübel, M. M. Biener, V. Zielasek, H.-P. Steinrück, J. M. Gottfried, J. Biener, A. Hamza and M. Bäumer: J. Phys. Chem. C 113 (2009) 5593-5600.
  17. M. Hakamada, T. Furukawa, T. Yamamoto, M. Takahashi and M. Mabuchi: Mater. Trans. 52 (2011) 806-809.
  18. Y. Ogata, K. Aika and T. Onishi: Surf. Sci. 140 (1984) L285-L289.
  19. Y. Ogata, K. Aika and T. Onishi: J. Catal. 112 (1988) 469-477.
  20. K. Aika, Y. Ogata, K. Takeishi, K. Urabe and T. Onishi: J. Catal. 114 (1988) 200-205.
  21. T. Hikita, Y. Kadowaki and K. Aika: J. Phys. Chem. 95 (1991) 9396-9402.
  22. K. Takeishi and K. Aika: J. Catal. 136 (1992) 252-257.
  23. K. Takeishi, Y. Yamashita and K. Aika: Appl. Catal. A 168 (1998) 345-351.
  24. C. Xu, L. Wang, X. Mu and Y. Ding: Langmuir 26 (2010) 7437-7443.
  25. S. M. Anlage, P. Nash, R. Ramachandran and R. B. Schwarz: J. Less-Common Metals 136 (1988) 237-247.
  26. Z. A. Chaudhury and C. Suryanarayana: J. Mater. Sci. 17 (1982) 3158-3164.
  27. M. Pourbaix: Atlas of Electrochemical Equilibria in Aqueous Solutions, (Pergamon Press, Oxford, 1966).
  28. T. B. Massalski and H. Okamoto (eds.): Binary Alloy Phase Diagrams, (ASM International, Ohio, 1990).
  29. P. Panagiotopoulou, D. I. Kondarides and X. E. Verykios: Appl. Catal. B 88 (2009) 470-478.
  30. K. Sieradzki, N. Dimitrov, D. Movrin, C. McCall, N. Vasiljevic and J. Erlebacher: J. Electrochem. Soc. 149 (2002) B370-B377.
  31. M. Hakamada, K. Tajima, K. Yoshimura, Y. Chino and M. Mabuchi: J. Alloy. Compd. 494 (2010) 309-314.
  32. A. K. Mishra, C. Bansal and H. Hahn: J. Appl. Phys. 103 (2008) 094308.
  33. D. V. Pugh, A. Dursun and S. G. Corcoran: J. Mater. Res. 18 (2003) 216-221.
  34. R. Li and K. Sieradzki: Phys. Rev. Lett. 68 (1992) 1168-1171.
  35. M. Hakamada and M. Mabuchi: J. Alloy. Compd. 479 (2009) 326-329.
  36. M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet and B. Delmon: J. Catal. 144 (1993) 175-192.
  37. T. Sreethawong and S. Yoshikawa: Catal. Commun. 6 (2005) 661-668.
  38. S. V. Petegem, S. Brandstetter, R. Maass, A. M. Hodge, B. S. El-Dasher, J. Biener, B. Schmitt, C. Borca and H. V. Swygenhoven: Nano Lett. 9 (2009) 1158-1163.
  39. J. Häglund, A. Fernández Guillermet, G. Grimvall and M. Körling: Phys. Rev. B 48 (1993) 11685-11691.
  40. J. Yu, Y. Ding, C. Xu, A. Inoue, Y. Sakurai and M. Chen: Chem. Mater. 20 (2008) 4548-4550.
  41. J. Assmann, V. Narkhede, N. A. Breuer, M. Muhler, A. P. Seitsonen, M. Knapp, D. Crihan, A. Farkas, G. Mellau and H. Over: J. Phys.: Condens. Matter 20 (2008) 184017.
  42. J. Wang, C. Y. Fan, K. Jacobi and G. Ertl: J. Phys. Chem. B 106 (2002) 3422-3427.
  43. J. Aßmann, E. Löffler, A. Birkner and M. Muhler: Catal. Today 85 (2003) 235-249.
  44. S. Ching, D. A. Kriz, K. M. Luthy, E. C. Njagi and S. L. Suib: Chem. Commun. 47 (2011) 8286-8288.
  45. Y.-F. Han, F. Chen, Z.-Y. Zhong, K. Ramesh, E. Widjaja and L.-W. Chen: Catal. Commun. 7 (2006) 739-744.
  46. S. A. C. Carabineiro, S. S. T. Bastos, J. J. M. Órfão, M. F. R. Pereira, J. J. Delgado and J. L. Figueiredo: Catal. Lett. 134 (2010) 217-227.
  47. K. Ramesh, L. Chen, F. Chen, Y. Liu, Z. Wang and Y.-F. Han: Catal. Today 131 (2008) 477-482.
  48. J. Kang, K. Cheng, L. Zhang, Q. Zhang, J. Ding, W. Hua, Y. Lou, Q. Zhai and Y. Wang: Angew. Chem. Int. Ed. 50 (2011) 5200-5203.


© 2012 The Japan Institute of Metals
Comments to us :