Materials Transactions Online

Materials Transactions, Vol.53 No.03 (2012) pp.518-523
© 2012 The Japan Institute of Metals

Pin-On-Disc Wear of Precipitation Hardened Titanium-Copper Alloys Fabricated by Powder Metallurgy

Tachai Luangvaranunt and Patchara Pripanapong

Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Phyathai road, Bangkok, 10330 Thailand

Titanium-2 mass%Cu and Ti-10 mass%Cu alloys were fabricated by powder metallurgy. The alloys were precipitation hardened to observe effect of heat treatment to their wear property. It was found that hardness of the two alloys increased after solution treatment to 320 and 526 HV, and after aging to 441 and 612 HV. However, wear resistance, as characterized by friction coefficient and mass loss in a pin-on-disc wear test deteriorated. In term of wear resistance, a lamellar morphology of eutectoid αTi/Ti2Cu was favorable to the homogenized morphology of heat treated alloys. Lowest specific wear rate was found in as-sintered Ti-10 mass%Cu, having a value of 1.16 × 10−13 m3/N·m.

(Received 2011/09/20; Accepted 2011/12/07; Published 2012/02/25)

Keywords: titanium, copper, sintering, solution treatment, aging, precipitation, wear, pin-on-disc, abrasion

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. J. L. Murray: ASM Handbook: Phase Diagrams, Vol. 3 (ASM International, Ohio, 1994) p. 180.
  2. S. Semboshi, T. Nishida and H. Numakura: Mater. Sci. Eng. A 517 (2009) 105-113.
  3. L. Castoldi, G. Visalli, S. Morin, P. Ferrari, S. Alberici, G. Ottaviani, F. Corni, R. Tonini, C. Nobili and M. Bersani: Microelectron. Eng. 76 (2004) 153-159.
  4. R. Knights and P. Wilkes: Acta Metall. 21 (1973) 1503-1514.
  5. W. A. Soffa and D. E. Laughlin: Prog. Mater. Sci. 49 (2004) 347-366.
  6. D. E. Laughlin and J. W. Cahn: Acta Metall. 23 (1975) 329-339.
  7. T. Radetic, V. Radmilovic and W. A. Soffa: Scr. Mater. 40 (1999) 845-852.
  8. T. D. Usunov, S. P. Stojanov and S. I. Lambov: Vacuum 52 (1999) 365-368.
  9. A. H. M. E. Rahman and M. N. Cavalli: Mater. Sci. Eng. A 527 (2010) 5189-5193.
  10. J. H. Li and R. Y. Lin: Mater. Sci. Eng. A 381 (2004) 39-50.
  11. M. Kikuchi, Y. Takada, S. Kiyosue, M. Yoda, M. Woldu, Z. Cai, O. Okuno and T. Okabe: Dent. Mater. 19 (2003) 174-181.
  12. C. Ohkubo, I. Shimura, T. Aoki, S. Hanatani, T. Hosoi, M. Hattori, Y. Oda and T. Okabe: Biomaterials 24 (2003) 3377-3381.
  13. Y. Oda, K. Nakanishi and T. Sumii: Bull. Tokyo Dental College 31 (1990) 47-52.
  14. E. H. Kraft: Oak Ridge National Laboratory Report, ORNL/Sub/4000013062/1, (Oak Ridge, Tennessee, 2002) p. 59.
  15. P. Pripanapong and T. Luangvaranunt: Adv. Mater. Res. 93-94 (2010) 99-104.
  16. T. Pieczonka, W. A. Kaysser and G. Petzow: J. Mater. Proc. Technol. 92-93 (1999) 21-24.
  17. R. M. German: Sinetering Theory and Practice, (John Wiley & Sons, Inc., New York 1996) p. 268.
  18. M. A. Turchanin and I. V. Nikolaenko: J. Alloy. Compd. 236 (1996) 236-242.
  19. F. F. Cardoso, A. Cremasco, R. J. Contieri, E. S. N. Lopes, C. R. M. Afonso and R. Caram: Mater. Des. 32 (2011) 4608-4613.
  20. S. A. Souza, C. R. M. Afonso, P. L. Ferrandini, A. A. Coellho and R. Caram: Mater. Sci. Eng. C 29 (2009) 1023-1028.
  21. X. Yao, Q. Y. Sun, L. Xiao and J. Sun: J. Alloy. Compd. 484 (2009) 196-202.
  22. F. C. Holden, A. A. Watts, H. R. Ogden and R. I. Jaffee: JOM 1 (1955) 117-125.
  23. J. Qu, P. J. Blau, T. R. Watkins, O. B. Cavin and N. S. Kulkarni: Wear 258 (2005) 1348-1356.
  24. G. W. Stachowiak and A. Batchelor: Engineering Tribology 3rd ed., (Elsevier Butterworth Hienemann, Massachusetts, 2005) p. 520.


© 2012 The Japan Institute of Metals
Comments to us :