Materials Transactions Online

Materials Transactions, Vol.53 No.03 (2012) pp.477-482
© 2012 The Japan Institute of Metals

Use of Chlorine to Remove Magnesium from Molten Aluminum

Estéfano Aparecido Vieira1, Jose Roberto de Oliveira1, Gianni Ferreira Alves1, Denise Crocce Romano Espinosa2 and Jorge Alberto Soares Tenório2

1Federal Institute of Espírito Santo - Department of Metallurgical and Materials Engineering, Av. Vitória, 1729, Vitória-ES, 29040-780 Brazil
2Polytechnic School - University of São Paulo - Department of Metallurgical and Materials Engineering, Av. Prof. Mello Moraes 2463, São Paulo - SP, 05508-030 Brazil

Removal of Mg from aluminum scraps, known as demagging, has been widely applied in the aluminum industry. This work discusses bubble-formation theories and magnesium kinetic removal from aluminum scraps using chlorine and inert gas fluxing. The interfacial area of the bubbles and residence time were estimated using a mathematical model. To inject gaseous chlorine, three types of nozzles were used with varying internal diameter. In addition, a porous plug, as well as varying input chlorine flow and concentration were used. The use of lower chlorine concentration improves efficiency because the interfacial tension is reduced therefore, more and smaller bubbles are formed. The model proposed herein is consistent with the experimental data.

(Received 2011/08/19; Accepted 2011/12/13; Published 2012/02/25)

Keywords: aluminum, refining, reactions rates

PDF(Free)PDF (Free) Table of ContentsTable of Contents

REFERENCES

  1. Q. Fu, D. Xu and J. W. Evans: Met. Mat. Trans. 29B (1998) 971-978.
  2. Q. Fu and J. W. Evans: Met. Mat. Trans. 29B (1998) 979-986.
  3. D. V. Neff and B. P. Cochran: Light Metals, Denver: TMS. (1993) pp. 1053-1060.
  4. T. A. Utigard, K. Friesen, J. L. Roy, A. Silny and C. Dupuis: JOM 50 (1998) 38-43.
  5. J. A. S. Tenório, M. C. Carboni and D. C. R. Espinosa: J. Light Met. 1 (2001) 195-198.
  6. B. L. Tiwari, B. J. Howie and R. M. Johnson: Trans. AFS 94 (1986) 385-390.
  7. G. M. Crepeau, M. L. Fenyes and J. L. Jeanneret: Modern Cast. 82 (1991) 28-30.
  8. R. Muñoz-Arroyo, J. C. Escobedo-Bocardo, H. M. Hernández-García, D. A. Cortés-Hernández, M. Terrones-Maldonado, A. Rodríguez-Pulido and J. L. Hernández-Piñero: Rev. Met. 46 (2010) 351-359.
  9. G. K. Sigworth and T. A. Engh: Scand. J. Met. 11 (1982) 143-149.
  10. A. T. Engh: Principles of Metal Refining, (Science Publications, New Tork, 1992) pp. 171-218.
  11. Z. Moser: J. Phase Equilib. 19 (1998) 38-47.
  12. B. Lagowski: Trans. AFS 77 (1968) 205-207.
  13. American Society for Testing and Materials: Annual Book of ASTM Standard, (2000).
  14. H. Higbie: Trans. AIChE 31 (1935) 365-388.
  15. J. A. S. Tenório and D. C. R. Espinosa: Oxid. Met. 53 (2000) 361-373.
  16. J. Szekely: Fluid Flow Phenomena in Metals Processing, (Academic Press, London, 1979) pp. 305-350.
  17. M. Iguchi, M. Kaji and Z. Morita: Met. Mat. Trans. 29B (1998) 1209-1218.


[JIM HOME] [JOURNAL ARCHIVES]

© 2012 The Japan Institute of Metals
Comments to us : editjt@jim.or.jp