Materials Transactions Online

Materials Transactions, Vol.53 No.03 (2012) pp.469-476
© 2012 The Japan Institute of Metals

Effects of Strain Rate and Temperature on Shear Properties and Fracture Characteristics of 316L Stainless Steel

Woei-Shyan Lee1, Tao-Hsing Chen2, Chi-Feng Lin3 and Zong-Yun Li1

1Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan, R. O. China
2Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 807, Taiwan, R. O. China
3National Center for High-Performance Computing, Hsin-Shi District, Tainan City 744, Taiwan, R. O. China

The dynamic shear deformation behaviour and fracture characteristics of 316L stainless steel are investigated using a split-Hopkinson torsional bar system at temperatures of −150, 25 and 300°C and strain rates ranging from 1000 to 3000 s−1. The results show that the flow stress, shear fracture strain, work hardening rate, and strain rate sensitivity all increase with increasing strain rate for a given temperature, but decrease with increasing temperature given a constant strain rate. The activation energy decreases with increasing shear stress for a constant shear strain, but increases with increasing shear strain given a constant shear stress. Optical microscopy observations reveal that localized plastic flows occur in the shear deformation region. Moreover, the flow angle increases with increasing strain rate and temperature. Scanning electron microscopy observations show that the fracture surfaces are characterized by a dimple-like structure, which indicates a ductile failure mode. The morphology and density of the dimple-like structures are highly sensitive to the strain rate and temperature conditions. Overall, the microstructural observations show that the shear response of 316L stainless steel is directly related to the effects of the strain rate and temperature on the evolution of the sheared microstructure.

(Received 2011/09/06; Accepted 2011/12/09; Published 2012/02/25)

Keywords: 316L stainless steel, strain rate effect, temperature sensitivity, intense localised shearing, dimple

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. R. A. Lula, J. G. Parr and A. Hanson: Stainless Steel, (ASM, Metals Park, OH, 1986) pp. 60-70.
  2. S. G. Hong and S. B. Lee: Int. J. Fatigue 26 (2004) 899-910.
  3. M. C. Mataya, E. R. Nilsson, E. L. Brown and G. Krauss: Metall. Mater. Trans. A 34A (2003) 1683-1703.
  4. M. F. Abbod, C. M. Sellars, A. Tanaka, D. A. Linkens and M. Mahfouf: Mater. Sci. Eng. A 491 (2008) 290-296.
  5. E. Otero, A. Pardo, M. V. Urilla, E. Saenz and J. F. Alvarez: Corros. Sci. 40 (1998) 1421-1434.
  6. W. S. Lee and T. H. Chen: Mater. Chem. Phys. 113 (2009) 734-745.
  7. R. Liang and A. S. Khan: Int. J. Plasticity 15 (1999) 963-980.
  8. W. S. Lee, C. F. Lin, T. H. Chen and H. H. Huang: J. Mech. Behav. Biomed. 1 (2008) 336-344.
  9. Y. B. Xu, W. L. Zhong, Y. J. Chen, L. T. Shen, Q. Lin, Y. L. Bai and M. A. Meyer: Mater. Sci. Eng. A 299 (2001) 287-295.
  10. W. S. Lee, C. F. Lin, T. H. Chen and M. C. Yang: J. Mater. Res. 25 (2010) 754-763.
  11. P. S. Follausbee and U. F. Kocks: Acta Metall. 36 (1988) 81-93.
  12. W. S. Lee, C. F. Lin, C. Y. Liu and C. W. Cheng: Metall. Mater. Trans. A 35 (2004) 1501-1515.
  13. A. Uenishi, C. Teodosiu and E. V. Nesterova: Mater. Sci. Eng. A 400-401 (2005) 499-503.
  14. R. Kapoor and S. Nemat-Nasser: Metall. Mater. Trans. A 31A (2000) 815-823.
  15. W. S. Lee and C. F. Lin: Metall. Mater. Trans. A 33A (2002) 2801-2810.
  16. W. S. Lee and H. C. Shen: Mater. Sci. Technol. 20 (2004) 8-15.
  17. P. Ludwik: Elemente der technologischen mechanik, (Springer-Verlag DHG, Berlin, 1909).
  18. S. S. Egg, Y. Q. Sue and P. B. Hirsch: Mater. Sci. Eng. A 192-193 (1995) 45-52.
  19. W. S. Lee and Y. C. Lin: Mater. Sci. Technol. 22 (2006) 571-582.
  20. G. B. Gibbs: Mater. Sci. Eng. 4 (1969) 313-328.
  21. L. Shi and D. O. Northwood: Acta Metall. Mater. 43 (1995) 453-460.


© 2012 The Japan Institute of Metals
Comments to us :