Materials Transactions Online

Materials Transactions, Vol.52 No.03 (2011) pp.272-275
© 2011 The Japan Institute of Metals

Superconducting Properties of MgB2 Particle Impregnated with Mg-Based Alloys

Yusuke Shimizu1, Kenji Matsuda1, Manabu Mizutani1, Katsuhiko Nishimura1, Tokimasa Kawabata1, Susumu Ikeno1, Yoshimitsu Hishinuma2 and Shigeki Aoyama3

1Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
2National Institute for Fusion Science, Toki 509-5292, Japan
3Nikkei Niigata, Co. Ltd., Niigata 950-3101, Japan

The three-dimensional penetration method combined with semi-solid casting (SS-3DPC) was utilized to prepare magnesium diboride (MgB2) powder composite materials with various host materials of Mg, Mg-3%Al, Mg-3%Al-1%Zn, Mg-9%Al, and Mg-9%Al-1%Zn. X-ray diffraction measurements indicated predominant peak patterns of MgB2 and a host alloy, implying that the host material tightly bonded MgB2 grains without melting the MgB2 powder. This was confirmed by SEM images. Measured electrical resistivity and magnetization versus temperature showed clear signals of superconducting transition temperature of 27 ∼ 38 K for all the samples cut out from the billets. Magnetic hysteresis loop observed at 5 K enabled us to estimate a critical current density (Jc) based on the extended Bean model. Additions of aluminum and zinc elements to magnesium host-matrix were found to enhance Jc and increase residual resistivity (ρ0) suggesting that aluminum and zinc have an effect on pinning magnetic flux flow for Jc enhancement, and scattering conduction electrons for increase of ρ0.

(Received 2010/8/30; Accepted 2010/9/28; Published 2010/11/17)

Keywords: magnesium diboride, magnesium-alloy composite, three-dimensional penetration casting, critical current density

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani and J. Akimitsu: Nature 410 (2001) 63–64.
  2. V. Braccini et al.: Phys. Rev. B 71 (2005) 012504(4).
  3. T. Masushita, S. Lee, A. Yamamoto and S. Tajima: Physics C 378–381 (2002) 216–219.
  4. T. Klein, L. Lyard, J. Marcus, Z. Holanova and C. Marcenat: Phys. Rev. B 73 (2006) 184513.
  5. K. Tanaka, M. Okada, M. Hirakawa, H. Yamada, H. Kumakura and H. Kitaguchi: Supercond. Sci. Technol. 18 (2005) 678.
  6. K. Tanaka, K. Funaki, T. Sueyoshi, Y. Sasashige, K. Kajikawa, M. Okada, H. Kumakura and H. Hayashi: Supercond. Sci. Technol. 21 (2008) 095007.
  7. E. W. Collings, M. D. Sumption, M. Bhatia, M. A. Susner and S. D. Bohnenstiehl: Supercond. Sci. Technol. 21 (2008) 103001(14p).
  8. W. K. Yeoh and S. X. Dou: Physica C 456 (2007) 170–179.
  9. P. Toulemonde, N. Musolino, H. L. Suo and R. Flukiger: J. Supercond. 15 (2002) 613–619.
  10. P. Toulemonde, N. Musolino and R. Flukiger: Supercond. Sci. Technol. 16 (2003) 231–236.
  11. S. Soltanian, X. L. Wang, J. Horvat, S. X. Dou, M. D. Sumption, M. Bhatia, E. W. Collings, P. Munroe and M. Tomsic: Supercond. Sci. Technol. 18 (2005) 658–666.
  12. P. P. Singh and P. J. T. Joseph: J. Phys. Condens. Matter 14 (2002) 12441–12449.
  13. P. P. Singh: Bull. Matter. Sci. 26 (2003) 131–135.
  14. P. P. Singh: Solid State Commun. 127 (2003) 271–2271.
  15. J. M. Rowell: Supercond. Sci. Technol. 16 (2003) R17–R27.
  16. A. Yamamoto, J. Shimoyama, K. Kishio and T. Matsushita: Supercond. Sci. Technol. 20 (2007) 658–666.
  17. T. Matsushita, M. Kiuchi, A. Yamamoto, J. Shimoyama and K. Kishio: Supercond. Sci. Technol. 21 (2008) 015008(7).
  18. S. X. Dou, X. L. Wang, J. Horvat, D. Milliken, A. H. Li, K. Konstantinov, E. W. Collings, M. D. Sumption and H. K. Liu: Physica C 361 (2001) 79–83.
  19. K. Matsuda, T. Saeki, K. Nishimura, S. Ikeno, Y. Yabumoto and K. Mori: Mater. Trans. 47 (2006) 1214–1220.
  20. K. Matsuda, K. Nishimura, S. Ikeno, K. Mori, S. Aoyama, Y. Yabumoto, Y. Hishinuma, I. Mullerova, L. Frank, V. V. Yurchenko and T. H. Johansen: J. Phys. Conf. Series 97 (2008) 012230 (6p).
  21. J. S. Slusky, N. Rogado, K. A. Regan, M. A. Hayward, P. Khalifah, T. He, K. Inumaru, S. M. Loureiro, M. K. Haas, H. W. Zandbergen and R. J. Cava: Nature 410 (2001) 343–345.
  22. C. P. Bean: Phys. Rev. Lett. 8 (1962) 250–253.
  23. Z. Cheng, B. Shen, J. Zhang, S. Zhang, T. Zhao and H. Zhao: J. Appl. Phys. 91 (2002) 7125–7127.
  24. Y. Kimishima, Y. Sugiyama, S. Numa, M. Uehara and T. Kuramoto: Physics C 468 (2008) 1185–1187.


© 2011 The Japan Institute of Metals
Comments to us :