Materials Transactions Online

Materials Transactions, Vol.51 No.09 (2010) pp.1671-1676
© 2010 The Japan Institute of Metals

Novel Technique for the Application of Azole Corrosion Inhibitors on Copper Surface

Faiza M. Al Kharafi, Nouria A. Al-Awadi, Ibrahim M. Ghayad, Ragab M. Abdullah and Maher R. Ibrahim

Chemistry Department, Faculty of Science, Kuwait University, Kuwait

A new method was proposed for the application of azole corrosion inhibitors on the surface of copper. This method depends on the vacuum pyrolysis of the inhibitor in the presence of copper specimens. Three azole inhibitors namely; benzotriazole (Azole (1)), N-[Benzotriazol-1-yl-(phenyl)-methylene]-N-phenyl-hydrazine (Azole (2)) and N-[Benzotriazol-1-yl-(4-methoxy-phenyl)-methylene]-N-phenyl-hydrazine (Azole (3)) were tested. After pyrolysis copper samples were electrochemically tested in sulfide polluted salt water and compared to the behavior of copper tested in the sulfide polluted salt water containing dissolved benzotriazole. Results showed that copper specimens treated in the presence of Azoles (2) and (3) exhibit excellent corrosion resistance. Those samples could resist the poisoning effect of sulfide ions. Azole (1) shows good resistance at low sulfide concentration and failed at the high concentration. Surface investigation support the results of electrochemical tests.

(Received 2010/4/21; Accepted 2010/6/11; Published 2010/8/25)

Keywords: copper, corrosion inhibitors, pyrolysis, azoles

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. F. El Taib Heakal and S. Haruyama: Corros. Sci. 20 (1980) 887–898.
  2. R. Youda, H. Nishihara and K. Aramaki: Corros. Sci. 28 (1988) 87–96.
  3. A. D. Modestov, G.-D. Zhou, Y. P. Wu, T. Notoya and D. P. Schweinsberg: Corros. Sci. 36 (1994) 1931–1946.
  4. D. Tromans and G. Li: Electrochem. Solid-State Lett. 5 (2002) B5–B8.
  5. Z. D. Schultz, M. E. Biggin, J. O. White and A. A. Gewirth: Anal. Chem. 76 (2004) 604–609.
  6. J. E. Walsh, H. S. Dhariwal, A. Gutierrez-Sosa, P. Finetti, C. A. Muryn, N. B. Brookes, R. J. Oldman and G. Thornton: Surf. Sci. 415 (1998) 423–432.
  7. H. Y. H. Chan and M. J. Weaver: Langmuir 15 (1999) 3348–3355.
  8. R. Youda, H. Nishihara and K. Aramaki: Electrochim. Acta 35 (1990) 1011–1017.
  9. T. Kosec, D. K. Merl and I. Milošev: Corros. Sci. 50 (2008) 1987–1997.
  10. S. M. Milić and M. M. Antonijević: Corros. Sci. 51 (2009) 28–34.
  11. K. F. Khaled: Electrochim. Acta 54 (2009) 4345–4352.
  12. D. Gopi, K. M. Govindaraju, V. Collins Arun Prakash, D. M. Angeline Sakila and L. Kavitha: Corros. Sci. 51 (2009) 2259–2265.
  13. M. Finšgar, A. Lesar, A. Kokalj and I. Milošev: Electrochim. Acta 53 (2008) 8278–8297.
  14. H. O. Curkovic, E. Stupnisek-Lisac and H. Takenouti: Corros. Sci. 52 (2010) 398–405.
  15. M. M. Antonijević, S. M. Milić and M. B. Petrović: Corros. Sci. 51 (2009) 1228–1237.
  16. G. Quartarone, M. Battilana, L. Bonaldo and T. Tortato: Corros. Sci. 50 (2008) 3467–3474.
  17. L. Garverick (Ed.): Corrosion in the Petrochemical Industry, (ASM International, Metals Park, OH, 1994) p.259.
  18. F. M. Al Khrafai, A. M. Abdullah, I. M. Ghayad and B. G. Ateya: Appl. Surf. Sci. 253 (2007) 8986–8991.
  19. H. Al-Awady, M. R. Ibrahim, N. A. Al-Awady and Y. I. Ibrahim: J. Heterocyclic Chem. 45 (2008) 723–727.
  20. B. M. Praveen and T. V. Venkatesha: Int. J. Electrochem. Sci. 4 (2009) 267–275.


© 2010 The Japan Institute of Metals
Comments to us :