Materials Transactions Online

Materials Transactions, Vol.51 No.09 (2010) pp.1651-1655
© 2010 The Japan Institute of Metals

Growth and Structural Characterizations of Nanostructured Chromium-Zirconium-Nitride Thin Films for Tribological Applications

Pattira Homhuan1, Surasing Chaiyakun2, Rattaporn Thonggoom3,4, Nurot Panich5 and Sukkaneste Tungasmita5,6

1Nanoscience and Technology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
2Department of Physics, Faculty of Science, Burapa University, Chonburi, 20131, Thailand
3Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
4Center for Surface Science and Engineering, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
5Center of Innovative Nanotechnology, Chulalongkorn University, Bangkok, 10330, Thailand
6Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand

Nanostructured Cr-Zr-N thin films were grown on Si(100) substrates in a mixture of Ar and N2 plasma. The nitrogen partial pressure was varied to produce and control the stoichiometric forms obtained. All the Cr-Zr-N films exhibited a nanostructure with an average grain size of less than 10 nm, as determined by X-ray diffractogram analysis, and were formed in the solid-solution. As the contents of nitrogen in the film increased, it lead to changes in the crystal texture and competitive growth. The maximum root mean square roughness was 7.87 nm at a 20% nitrogen partial pressure and the roughness tended to decrease as the grain size decreased. The nano-indentation showed that the films grown at a 20% nitrogen partial pressure and annealed at 700°C had the highest reduced modulus and hardness at 349.2 and 35.1 GPa, respectively. The mechanical properties of films can be improved by a post-annealing heat treatment. With respect to the electrical properties of these films, the sheet resistance, which is related to the defect level, tended to increase as the nitrogen partial pressure increased.

(Received 2010/4/20; Accepted 2010/6/10; Published 2010/7/28)

Keywords: magnetron sputtering, nanostructure, hard coating, protective thin films

PDF(Free)PDF (Free) Table of ContentsTable of Contents

REFERENCES

  1. J. Lin, Z. L. Wu, X. H. Zhang, B. Mishra, J. J. Moore and W. D. Sproul: Thin Solid Films 517 (2009) 1887–1894.
  2. S. H. Shin, M. W. Kim, M. C. Kang, K. H. Kim, D. H. Kwon and J. S. Kim: Surf. Coat. Technol. 202 (2008) 5613–5616.
  3. S. M. Aouadi, T. Maeruf, R. D. Twesten, D. M. Mihut and S. L. Rohde: Surf. Coat. Technol. 200 (2006) 3411–3417.
  4. G. S. Kim, B. S. Kim, S. Y. Lee and J. H. Hahns: Surf. Coat. Technol. 200 (2005) 1669–1675.
  5. R. Lamni, R. Sanjines, M. Parlinska-Wojtan, A. Karimi and F. Levy: J. Vac. Sci. Technol. A 23 (2005) 593–598.
  6. G. E. McGuire (Ed): Semiconductor Materials and Process Technology Handbook for Very Large Scale Integration (VLSI) and Ultra Large Scale Integration (ULSI), (Noyes Publications, New Jersey, 1988) p.373.
  7. S. Hofmann: Thin Solid Films 191 (1990) 335–348.
  8. J. L. Ruan, J. L. Huang, J. S. Chen and D. F. Lii: Surf. Coat. Technol. 200 (2005) 652–1658.
  9. P. Homhoul, C. Thavornthira, S. Chaiyakun and S. Tungasmita: J. Sci. Res. Chula Uni. 33 (2008) 43–49.
  10. G. Ababias: Surf. Coat. Technol. 202 (2008) 2223–2235.
  11. L. Combadiere and J. Machet: Surf. Coat. Technol. 88 (1996) 17–27.
  12. S. Ulrich, H. Holleck, J. Ye, H. Leiste, R. Loos, M. Stuber, P. Pesch and S. Sattel: Thin Solid Films 437 (2003) 164–169.
  13. S. PalDey and S. C. Deevi: Mater. Sci. Eng. A 342 (2003) 58–79.
  14. G. E. McGuire (Ed): Semiconductor Materials and Process Technology Handbook for Very Large Scale Integration (VLSI) and Ultra Large Scale Integration (ULSI), (Noyes Publications, New Jersey, 1988) p.415.
  15. Z. X. Song, Y. Wang, C. J. F. Wang, C. L. Liu and K. W. Xu: Surf. Coat. Technol. 202 (2007) 5412–5415.
  16. R. D. Arnell, J. S. Colligon, K. F. Minnebaev and V. E. Yurasova: Vacuum 47 (1996) 425–431.
  17. Y. K. Lee, J. Y. Kim, Y. K. Lee, M. S. Lee, D. K. Kim, D. Y. Jin, T. H. Nam, H. J. Ahn and D. K. Park: J. Crystal Growth 234 (2002) 498–504.
  18. L. Hulman, U. Helmersson, S. A. Barnett, J.-E. Sundgren and J. E. Greene: J. Appl. Phys. 61 (1987) 552–555.
  19. D. William and Jr. Callister: Material Science and Engineering an Introduction 6 ed., (John Wiley&Sons, 2003) p.77.
  20. L. Hultman: Vacuum 57 (2000) 1–30.
  21. P. K. Huang and J. W. Yeh: Surf. Coat. Technol. 203 (2009) 1891–1896.


[JIM HOME] [JOURNAL ARCHIVES]

© 2010 The Japan Institute of Metals
Comments to us : editjt@jim.or.jp