Materials Transactions Online

Materials Transactions, Vol.51 No.09 (2010) pp.1566-1569
© 2010 The Japan Institute of Metals

Enhanced Electrochemical Performances of Nanoporous Gold by Surface Modification of Titanium Dioxide Nanoparticles

Akira Kudo, Takeshi Fujita, Xingyou Lang, Luyang Chen and Mingwei Chen

WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

We reported novel nanoporous gold (NPG) with surface modified by TiO2 nanoparticles. The as-fabricated sample showed larger effective area than bare NPG. Microstructure characterization demonstrated that the TiO2 nanoparticles effectively suppressed the coarsening of the nanoporous structure by the reaction with gold ligaments. The resultant porous nanocomposite with rough ligament surfaces was proofed to spontaneously possess enhanced catalytic performance towards methanol oxidation. This result would yield an effective and inexpensive method to improve NPG's catalytic activity.

(Received 2010/4/23; Accepted 2010/6/24; Published 2010/8/25)

Keywords: nanoporous metal, dealloying, methanol oxidation, scanning electron microscope (SEM), transmission electron microscope (TEM)

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. T. Fujita and M. W. Chen: Jpn. J. Appl. Phys. 47 (2008) 1161–1163.
  2. T. Fujita, L. H. Qian, K. Inoke, J. Erlebacher and M. W. Chen: Appl. Phys. Lett. 92 (2008) 251902.
  3. J. T. Zhang, P. P. Liu, H. Y. Ma and Y. Ding: J. Phys. Chem. C 111 (2007) 10382–10388.
  4. C. X. Xu, J. X. Su, X. H. Xu, P. P. Liu, H. J. Zhao, F. Tian and Y. Ding: J. Am. Chem. Soc. 129 (2007) 42–43.
  5. T. Fujita, H. Okada, K. Koyama, K. Watanabe, S. Maekawa and M. W. Chen: Phys. Rev. Lett. 101 (2008) 166601.
  6. A. Wittstock, V. Zielasek, J. Biener, C. M. Friend and M. Bäumer: Science 327 (2010) 319–322.
  7. X. Y. Lang, P. F. Guan, L. Zhang, T. Fujita and M. W. Chen: J. Phys. Chem. C 111 (2009) 10956–10961.
  8. Y. Ding and M. W. Chen: Mater. Res. Bull. 34 (2009) 569–576.
  9. Y. Du, J. J. Xu and H. Y. Chen: Electrochem. Commun. 11 (2009) 1717–1720.
  10. X. B. Ge, X. L. Yan, R. Y. Wang, F. Tian and Y. Ding: J. Phys. Chem. C 113 (2009) 7379–7384.
  11. R. Zeis, A. Mathur, G. Fritz, J. Lee and J. Erlebacher: J. Power Sources 165 (2007) 65–72.
  12. X. Y. Lang, H. Guo, L. Y. Chen, A. Kudo, J. S. Yu, W. Zhang, A. Inoue and M. W. Chen: J. Phys. Chem. C 114 (2010) 2600–2603.
  13. M. Haruta: Catal. Today 36 (1997) 153–166.
  14. C. C. Jia, H. M. Yin, H. Y. Ma, R. Y. Wang, X. B. Ge, A. Q. Zhou, X. H. Xu and Y. Ding: J. Phys. Chem. C 113 (2009) 16138–16143.
  15. Y. Tian and T. Tatsuma: J. Am. Chem. Soc. 127 (2005) 7632–7637.
  16. H. X. Li, Z. F. Bian, J. Zhu, Y. N. Huo, H. Li and Y. F. Lu: J. Am. Chem. Soc. 129 (2007) 4538–4539.
  17. A. Furube, L. C. Du, K. Hara, R. Kato and M. Tachiya: J. Am. Chem. Soc. 129 (2007) 14852–14853.
  18. N. Shibata, A. Goto, K. Matsunaga, T. Mizoguchi, S. D. Findlay, T. Yamamoto and Y. Ikuhara: Phys. Rev. Lett. 102 (2009) 136105.
  19. L. H. Qian and M. W. Chen: Appl. Phys. Lett. 91 (2007) 083105.
  20. Y. Li, Y. Y. Song, C. Yang and X. H. Xia: Electrochem. Commun. 9 (2007) 981–988.


© 2010 The Japan Institute of Metals
Comments to us :