Materials Transactions Online

Materials Transactions, Vol.51 No.01 (2010) pp.62-67
© 2010 The Japan Institute of Metals

The Effects of Structure Orientation on the Growth of Fe2B Boride by Multi-Phase-Field Simulation

Raden Dadan Ramdan1, Tomohiro Takaki2, Kisaragi Yashiro1 and Yoshihiro Tomita3

1Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan
2Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
3Department of Mechanical Engineering, Fukui University of Technology, Fukui 910-8505, Japan

A morphological evolution of the growth of Fe2B boride on steel substrate has been investigated using two dimensional (2D) multi-phase-field (MPF) simulations. In order to evaluate competitive growth between boride seeds during the coating process, variations on boride seed orientation have been implemented. In addition, in order to have anisotropy growth of boride, anisotropy of interfacial energy is considered on the evaluation of phase-field evolution. It was observed that boride seed with structure orientation of 90° shows a preferential growth as compared with the growth of boride seeds at other orientations. On the other hand, competitive growth between boride seeds at different crystal orientations can also be observed, where boride seeds approaching a preferential orientation angle grow faster and suppress the growth of boride seeds at the lower orientation angle. Both of these present observations agree with previous experimental observations that boride seeds tend to grow perpendicular to the substrate surface and the growth of boride seeds in this direction suppress growth in other directions. Additionally, it was observed that the preferential growth of boride is independent of the initial size of the boride seed.

(Received 2009/6/30; Accepted 2009/10/9; Published 2009/12/25)

Keywords: boronizing, Fe2B boride, steel, multi-phase-field method, microstructure

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. W. Ficht: Mater. Design 2 (1981) 276–286.
  2. B. Venkataraman and G. Sundararajan: Surf. Coat. Tech. 73 (1995) 177–184.
  3. K. H. Habig and R. C. Fisher: Tribol. Int. 14 (1981) 209–215.
  4. W. Ficht: Heat Treat. Met. 10 (1983) 79–80.
  5. P. Jain and G. Sundararajan: Surf. Coat. Tech. 149 (2002) 21–26.
  6. E. Jelis: Bioeng. Conf., 2005, Proc. IEEE 31st Annual Northeast (2005) pp.193–194.
  7. O. Ozdemira, M. Ustab, C. Bindala and A. H. Ucisik: Vacuum 80 (2006) 1391–1395.
  8. Uslu, H. Comert, M. Ipek, O. Ozdemir and C. Bindal: Mater. Design 28 (2007) 55–61.
  9. C. Meric, S. Sahin, B. Backir and N. S. Koksal: Mater. Design 27 (2006) 751–757.
  10. I. C. Elikyureka, B. Baksana, O. Torunb and R. Gürler: Intermetall. 14 (2006) 136–141.
  11. J. H. Mass, G. H. Bastin, F. J. J. Vanloo and R. Metselaar: J. Appl. Cryst. 17 (1984) 103.
  12. C. Badini and D. Mazza: J. Mater. Sci. 23 (1988) 3061–3066.
  13. C. H. Xu, W. Gao and Y. L. Yang: J. Mater. Proc. Tech. 108 (2001) 349–355.
  14. D. M. Anderson, G. B. McFadden and A. A. Wheeler: Ann. Rev. Fluid Mech. 30 (1998) 139–165.
  15. A. A. Wheeler, W. J. Boettinger and G. B. McFadden: Phys. Rev. A 45 (1992) 7424–7439.
  16. B. Bottger, U. Grafe, D. Ma and S. G. Fries: Mater. Sci. Tech. 16 (2000) 1425–1428.
  17. I. Loginova, G. Amberg and J. Ågren: Acta Mater. 49 (2001) 573–581.
  18. A. Onuki: J. Japan Soc. Japan 58 (1989) 3065–3069.
  19. D. Y. Li and L. Q. Chen: J. Phase Equilib. 19 (1998) 523–528.
  20. J. W. Cahn, S. C. Han and G. B. McFadden: J. Stat. Phys. 95 (1999) 1337–1360.
  21. D. Fan, S. P. Chen, L. Q. Chen and P. W. Voorhees: Acta Mater. 50 (2002) 1895–1907.
  22. C. Sagui, D. Orlikowski, A. Somoza and C. Roland: Phys. Rev. E 58 (1998) 569–577.
  23. I. Steinbach, F. Pezzolla, B. Nestler, M. Seeßelberg, R. Prieler, G. J. Schmitz and J. L. L. Rezende: Physica D 94 (1996) 135–147.
  24. F. Leonard and R. C. Desai: Phys. Rev. B 58 (1998) 8277–8288.
  25. H. P. Leo and W. C. Johnson: Acta Mater. 49 (2001) 1771–1787.
  26. R. D. Ramdan, T. Takaki and Y. Tomita: Mater. Trans. 49 (2008) 2625–2631.
  27. I. Steinbach and F. Pezzolla: Physica D 134 (1999) 385–393.
  28. T. V. Rompaey, K. C. Hari Kumar and P. Wollants: J. Alloy. Compd. 334 (2002) 173–181.
  29. T. Takaki, T. Hirouchi, Y. Hisakuni, A. Yamanaka and Y. Tomita: Mater. Trans. 49 (2008) 2559–2565.
  30. J. Tiaden, B. Nestler, H. J. Diepers and I. Steinbach.: Physica D 115 (1998) 73–86.
  31. S. G. Kim, D. I. Kim, W. T. Kim and Y. B. Park: Phys. Rev. E 74 (2006) 601–605.
  32. M. Keddam: Appl. Surf. Sci. 236 (2004) 451–455.
  33. G. B. McFadden, A. A. Wheeler, R. J. Braun, S. R. Coriell and R. F. Sekerka: Phys. Rev. E 48 (1993) 2016–2024.
  34. C. H. Xu, J. K. Xi and W. Gao: Scr. Mater. 34 (1996) 455–461.


© 2010 The Japan Institute of Metals
Comments to us :