Materials Transactions Online

Materials Transactions, Vol.50 No.07 (2009) pp.1613-1619
© 2009 The Japan Institute of Metals

Using Severe Plastic Deformation for the Processing of Advanced Engineering Materials

Roberto B. Figueiredo1 and Terence G. Langdon1,2

1Departments of Aerospace & Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453, U.S.A.
2Materials Research Group, School of Engineering Sciences, University of Southampton, Southampton SO17 1BJ, U.K.

The processing of metals through the application of severe plastic deformation leads to significant grain refinement and provides an opportunity for achieving superior properties. The two procedures of equal-channel angular pressing (ECAP) and high-pressure torsion (HPT) are examined with emphasis on the mechanical properties at low and high temperatures and the nature of the grain refinement. It is demonstrated that grain refinement occurs relatively homogeneously in f.c.c metals through the formation of dislocation cells or subgrains and the evolution of these cells into an array of ultrafine grains separated by high angle boundaries. By contrast, grain refinement in h.c.p. metals such as magnesium is inhomogeneous and occurs through the nucleation of new grains along the initial grain boundaries due to the high stresses generated to activate multiple slip systems. Ultrafine-grained metals generally exhibit high strength but they may exhibit weakening if the processing conditions adversely affect the precipitate morphology. If the ultrafine grains are stable at high temperatures there is a possibility of achieving excellent superplastic properties.

(Received 2009/1/6; Accepted 2009/3/4; Published 2009/6/25)

Keywords: equal-channel angular pressing, grain refinement, high-pressure torsion, severe plastic deformation, ultrafine-grained materials

PDF(Free)PDF (Free) Table of ContentsTable of Contents

REFERENCES

  1. R. Z. Valiev, R. K. Islamgaliev and I. V. Alexandrov: Prog. Mater. Sci. 45 (2000) 103–189.
  2. R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer and Y. T. Zhu: JOM 58 (4) (2006) 33–38.
  3. R. Z. Valiev and T. G. Langdon: Prog. Mater. Sci. 51 (2006) 881–981.
  4. A. P. Zhilyaev and T. G. Langdon: Prog. Mater. Sci. 53 (2008) 893–979.
  5. Z. Horita, T. Fujinami, M. Nemoto and T. G. Langdon: Metall. Mater. Trans. 31A (2000) 691–701.
  6. M. Kawasaki, R. B. Figueiredo, C. Xu and T. G. Langdon: Metall. Mater. Trans. 38A (2007) 1891–1898.
  7. M. Kawasaki and T. G. Langdon: J. Mater. Sci. 42 (2007) 1782–1796.
  8. R. B. Figueiredo and T. G. Langdon: Adv. Eng. Mater. 10 (2008) 37–40.
  9. R. Lapovok, Y. Estrin, M. V. Popov and T. G. Langdon: Adv. Eng. Mater. 10 (2008) 429–433.
  10. Z. Horita and T. G. Langdon: Scr. Mater. 58 (2008) 1029–1032.
  11. R. Z. Valiev, M. J. Zehetbauer, Y. Estrin, H. W. Höppel, Y. Ivanisenko, H. Hahn, G. Wilde, H. J. Roven, X. Sauvage and T. G. Langdon: Adv. Eng. Mater. 9 (2007) 527–533.
  12. R. Z. Valiev, I. P. Semenova, V. V. Latysh, H. Rack, T. C. Lowe, J. Petruželka, L. Dluhoš, D. Hrušák and J. Sochová: Adv. Eng. Mater. 10 (2008) B15–B17.
  13. V. M. Segal, V. I. Reznikov, A. E. Drobyshevskiy and V. I. Kopylov: Russian Metall. 1 (1981) 99–105.
  14. M. Furukawa, Z. Horita, M. Nemoto and T. G. Langdon: J. Mater. Sci. 36 (2001) 2835–2843.
  15. Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto and T. G. Langdon: Scr. Mater. 35 (1996) 143–146.
  16. M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langdon: Mater. Sci. Eng. A 257 (1998) 328–332.
  17. K. Oh-ishi, Z. Horita, M. Furukawa, M. Nemoto and T. G. Langdon: Metall. Mater. Trans. 29A (1968) 2011–2013.
  18. Z. Horita, T. Fujinami and T. G. Langdon: Mater. Sci. Eng. A 318 (2001) 34–41.
  19. R. Srinivasan, B. Cherukuri and P. K. Chaudhury: Mater. Sci. Forum 503–504 (2006) 371–378.
  20. R. Z. Valiev, Yu. V. Ivanisenko, E. F. Rauch and B. Baudelet: Acta Mater. 44 (1996) 4705–4712.
  21. F. Wetscher, A. Vorhauer, R. Stock and A. Pippan: Mater. Sci. Eng. A 387–389 (2004) 809–816.
  22. G. Sakai, K. Nakamura, Z. Horita and T. G. Langdon: Mater. Sci. Eng. A 406 (2005) 268–273.
  23. R. Pippan, S. Scheriau, A. Hohenwarter and M. Hafok: Mater. Sci. Forum 584–586 (2008) 16–21.
  24. Z. Horita, K. Ohashi, T. Fujita, K. Kaneko and T. G. Langdon: Adv. Mater. 17 (2005) 1599–1602.
  25. C. Xu and T. G. Langdon: J. Mater. Sci. 42 (2007) 1542–1550.
  26. C. Xu and T. G. Langdon: Scr. Mater. 48 (2003) 1–4.
  27. C. Xu, M. Furukawa, Z. Horita and T. G. Langdon: Mater. Sci. Eng. A 398 (2005) 66–76.
  28. C. Xu, K. Xia and T. G. Langdon: Acta Mater. 55 (2007) 2351–2360.
  29. M. Prell, C. Xu and T. G. Langdon: Mater. Sci. Eng. A 480 (2008) 449–455.
  30. C. Xu, Z. Horita and T. G. Langdon: J. Mater. Sci. 43 (2008) 7286–7292.
  31. Y. Estrin, A. Molotnikov, C. H. J. Davies and R. Lapovok: J. Mech. Phys. Solids 56 (2008) 1186–1202.
  32. C. Xu, Z. Horita and T. G. Langdon: Acta Mater. 55 (2007) 203–212.
  33. M. Kawasaki and T. G. Langdon: Mater. Sci. Eng. A 498 (2008) 341–348.
  34. Y. Fukuda, K. Oh-ishi, M. Furukawa, Z. Horita and T. G. Langdon: Acta Mater. 52 (2004) 1387–1395.
  35. M. Furukawa, Y. Kawasaki, Y. Miyahara, Z. Horita and T. G. Langdon: Mater. Sci. Eng. A 410–411 (2005) 194–200.
  36. Y. Fukuda, K. Oh-ishi, M. Furukawa, Z. Horita and T. G. Langdon: Mater. Sci. Eng. A 420 (2006) 79–86.
  37. Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langdon: Acta Mater. 45 (1997) 4733–4741.
  38. Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langdon: Acta Mater. 46 (1998) 3317–3331.
  39. Y. Iwahashi, M. Furukawa, Z. Horita, M. Nemoto and T. G. Langdon: Metall. Mater. Trans. 29A (1998) 2245–2252.
  40. S. D. Terhune, D. L. Swisher, K. Oh-ishi, Z. Horita, T. G. Langdon and T. R. McNelley: Metall. Mater. Trans. 33A (2002) 2173–2184.
  41. A. P. Zhilyaev, D. L. Swisher, K. Oh-ishi, T. G. Langdon and T. R. McNelley: Mater. Sci. Eng. A 429 (2006) 137–148.
  42. A. A. Salem, T. G. Langdon, T. R. McNelley, S. R. Kalidindi and S. L. Semiatin: Metall. Mater. Trans. 37A (2006) 2879–2891.
  43. T. G. Langdon: Mater. Sci. Eng. A 462 (2007) 3–11.
  44. D. Kuhlmann-Wilsdorf: Mater. Sci. Eng. A 113 (1989) 1–41.
  45. D. Kuhlmann-Wilsdorf: Scr. Mater. 36 (1997) 173–181.
  46. A. Yamashita, Z. Horita and T. G. Langdon: Mater. Sci. Eng. A 300 (2001) 142–147.
  47. Z. Horita, K. Matsubara, K. Makii and T. G. Langdon: Scr. Mater. 47 (2002) 255–260.
  48. K. Matsubara, Y. Miyahara, Z. Horita and T. G. Langdon: Acta Mater. 51 (2003) 3073–3084.
  49. A. Galiyev, R. Kaibyshev and G. Gottstein: Acta Mater. 49 (2001) 1199–1207.
  50. R. B. Figueiredo and T. G. Langdon: Mater. Sci. Eng. A 501 (2009) 105–114.
  51. C. Xu, Z. Száraz, Z. Trojanová, P. Lukáč and T. G. Langdon: Mater. Sci. Eng. A 497 (2008) 206–211.
  52. C. Xu, M. Furukawa, Z. Horita and T. G. Langdon: Acta Mater. 51 (2003) 6139–6149.
  53. C. Xu, M. Furukawa, Z. Horita and T. G. Langdon: Acta Mater. 53 (2005) 749–758.
  54. T. G. Langdon: Acta Metall. Mater. 42 (1994) 2437–2443.
  55. R. B. Figueiredo and T. G. Langdon: J. Mater. Sci. 43 (2008) 7366–7371.
  56. H. Somekawa, H. Hosokawa, H. Watanabe and K. Higashi: Mater. Sci. Eng. A 339 (2003) 328–333.
  57. J. A. del Valle, F. Carreño and O. A. Ruano: Scr. Mater. 57 (2007) 829–832.


[JIM HOME] [JOURNAL ARCHIVES]

© 2009 The Japan Institute of Metals
Comments to us : editjt@jim.or.jp