Materials Transactions Online

Materials Transactions, Vol.49 No.10 (2008) pp.2383-2388
© 2008 The Japan Institute of Metals

Metal Leaching from Spent Petroleum Catalyst by Acidophilic Bacteria in Presence of Pyrite

Dong J. Kim1, D. Mishra1, K. H. Park1, J. G. Ahn1 and D. E. Ralph2

1Minerals and Material Processing Division, Korea Institute of Geoscience and Mineral resources, Daejeon 305-350, Korea
2AJ Parker CRC for Hydrometallurgy, Murdoch University, South Street Murdoch, Perth 6153, Australia

This paper describes studies on the recovery of metals from spent hydro-processing catalyst using mixed acidophilic culture in presence of pyrite. This culture was initially grown in the 9K- medium (absence of 9 g/L Fe(II)) where ferrous sulphate (FeSO4) was replaced by pyrite, and then applied in this bioleaching study. Bacterial action on pyrite catalysed the formation of ferric ion (Fe+3), proton (H+) and sulphate ions (SO4-2) in the solution which leached metals (Ni, Mo and V) from the spent catalyst. Experiments were conducted by varying the reaction time, amount of spent catalyst and pyrite, and temperature. After 7 days with 30 g/L of spent catalyst and 50 g/L of pyrite, the leaching of Ni, V and Mo into the solution was 85, 92 and 26%, respectively. With increasing spent catalyst loading, the extent of metal dissolution was decreased, probably due to the precipitation of Fe+3 as a residue. Under all conditions tested, Mo showed recovery due to its precipitation with leach residues as MoO3 observed by applying EDAX and XRD techniques to the leach residues.

(Received 2008/6/10; Accepted 2008/7/22; Published 2008/9/3)

Keywords: bioleaching, acidophilic bacteria, spent catalyst, pyrite, sulphate

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. E. Furimsky: Catalysis Today 30 (1996) 223–286.
  2. D. Trimm: Appl. Catal. 212 (2001) 153–160.
  3. D. Rapaport: Hydrocarb. Process. 79 (2000) 49–53.
  4. Y. C. Lai, W. J. Lee, K. L. Huang and C. M. Wu: J. Hazard. Mat. 154 (2008) 588–594.
  5. K. H. Park, D. Mohapatra and C. W. Nam: J. Hazard Mat. 148 (2007) 287–295.
  6. K. Koyama, M. Tanaka and J. C. Lee: Mater. Trans. 47 (2006) 1788–1792.
  7. R. K. Jana, D. D. N. Singh and S. K. Roy: Mater. Trans., JIM 34 (1993) 593–598.
  8. D. Mishra, D. J. Kim, D. E. Ralph, J. G. Ahn and Y. H. Rhee: J. Hazard. Mat. 152 (2008) 1082–1091.
  9. D. Mishra, D. J. Kim, D. E. Ralph, J. G. Ahn and Y. H. Rhee: Hydrometllurgy 88 (2007) 202–209.
  10. D. Santhiya and Y. P. Ting: J. Biotechnol. 116 (2005) 171–184.
  11. K. M. M. Aung and Y. P. Ting: J. Biotechnol. 116 (2005) 159–170.
  12. U. Helle and U. Onken: Appl. Microb. Biotechnol. 28 (1988) 553–558.
  13. W. Sand and T. Gehrke: Res. Microbiol. 157 (2006) 49–56.
  14. D. Mikkelsen, U. Kappler, R. I. Webb, R. Rasch, A. G. McEwan and L. I. Sly: Hydrometallurgy 88 (2007) 143–153.
  15. A. Kumari and K. A. Natarajan: Euro. J. Min. Proc. Environ. Prot. 1 (2001) 10–24.
  16. K. D. Mehta, B. D. Pandey and T. R. Mankhand: Min. Eng. 16 (2003) 523–527.
  17. A. P. Harrison: Annu. Rev. Microbiol. 38 (1984) 265–292.
  18. E. M. Ho, J. Kyle, S. Lallenec and D. M. Muir: Process Hydrometallurgy, (SCI London, Chapman and Hall, 1994) pp.1105–1121.
  19. E. Deltombe, N. de Zoubov and M. Pourbaix: Molybdenum, (Atlas of Electrochemical Equilibria in Aqueous Solutions, NACE, 1974) pp.272–279.


© 2008 The Japan Institute of Metals
Comments to us :