Materials Transactions Online

Materials Transactions, Vol.49 No.08 (2008) pp.1760-1767
© 2008 The Japan Institute of Metals

Full-Potential Screened KKR Calculations for Magnetism of Co2MnSi, Ni2MnAl and Ru2MnSi, Based on the Generalized Gradient Approximation

M. Asato1, M. Ohkubo2, T. Hoshino3, F. Nakamura4, N. Fujima2 and H. Tatsuoka2

1Niihama National College of Technology, Niihama 792-8580, Japan
2Faculty of Engineering, Shizuoka University, Hamamatsu 432-8561, Japan
3Nanomaterials Section, Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561, Japan
4National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8563, Japan

We present systematic ab-initio calculations for nonmagnetic (NM), ferromagnetic (FM), and antiferromagnetic (AFM) states of full-Heusler alloys (X2YZ) such as Co2MnSi (X = Co, Y = Mn, Z = Si), Ni2MnAl (X = Ni, Y = Mn, Z = Al), and Ru2MnSi (X = Ru, Y = Mn, Z = Si). The calculations are based on the all-electron full-potential (FP) screened Korringa-Kohn-Rostoker (KKR) Green's-function method combined with the generalized-gradient approximation in the density-functional formalism. We show that the present calculations reproduce very well the experimental ground states of these alloys (FM of Co2MnSi and Ni2MnAl, AFM of Ru2MnSi) and the available measured values for lattice parameters and magnetic moments. It is also shown that the fundamental features of the magnetism of Co2MnSi (strong FM) and Ni2MnAl (weak FM) are understood by using the Mn spin-flip energies and the Mn-Mn exchange interaction energies in X (= Co, Ni), both of which are obtained by the present FP-KKR calculations for the impurity systems. We can show that the magnetism of Ni2MnAl may be changed from FM to AFM by atomic disorder (B2-structure) occurring at elevated temperatures.

(Received 2008/4/3; Accepted 2008/5/28; Published 2008/7/9)

Keywords: electronic structure of full-Heusler alloys, magnetism, point defects, ab-initio calculations

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. Half-metallic alloys: fundamentals and applications (Lecture Notes in Physics Vol.676), ed by Galanakis and P. H. Dederichs (Springer, Berlin, 2005).
  2. P. J. Webster and K. R. A. Ziebeck: Heusler Alloys and Compounds of d-Elements with Main Group Elements (Landolt-Bornstein-Group III Condensed Matter. Part 2 vol.19c), ed by H. R. J. Wijn (Springer, Berlin, 1988).
  3. As the spin-orbit interaction induce the mixing of up-spin and down-spin electrons, it is impossible to obtain the spintronics devise of complete (100%) spin-polarization. However, it was shown by Marvropoulos et al. (Phys. Rev. B 69 (2004), 054424) that the effect due to the spin-orbit interaction is very small for the materials such as 3d element-based alloys. For example, the 100% spin-polarization for the NiMnSb, obtained by the calculations without the spin-orbit interaction, decreases only by ∼1% by taking into account the spin-orbit interaction.
  4. S. Fujii, S. Sugimura, S. Ishida and S. Asano: J. Phys.: Condens. Matter 2 (1990) 8583.
  5. M. P. Raphael, B. Ravel, M. A. Willard, S. F. Cheng, B. N. Das, R. M. Stroud, K. M. Bussmann, J. H. Claassen and V. G. Harris: Appl. Phys. Lett. 79 (2001) 4396.
  6. B. Ravel, J. O. Cross, M. P. Rapahael, V. G. Harris, R. Ramesh and V. Saraf: Appl. Phys. Lett. 81 (2002) 2812.
  7. M. P. Raphael, B. Ravel, Q. Huang, M. A. Willard, S. F. Cheng, B. N. Das, R. M. Stroud, K. M. Bussmann, J. H. Claassen and V. G. Harris: Phys. Rev. B 66 (2002) 104429.
  8. S. Picozzi, A. Continenza and A. J. Freeman: Phys. Rev. B 66 (2002) 094421.
  9. A. Fujita, K. Fukamachi, F. Gejima, R. Kainuma and K. Ishida: Appl. Phys. Lett. 77 (2000) 3054.
  10. T. Büsgen, J. Feydt, R. Hassdorf, S. Thienhaus and M. Moske: Phys. Rev. B 70 (2004) 014111.
  11. Y. Sutou, I. Ohnuma, R. Kainuma and K. Ishida: Metall. Mater. Trans. A 29A (1998) 2225.
  12. J. Soltys: Phys. Stat. Sol. (a) 66 (1981) 485.
  13. K. Ishikawa, I. Ohnuma, R. Kainuma, K. Aoki and K. Ishida: J. Alloys. Comp. 367 (2004) 2.
  14. T. Kanomata, M. Kikuchi, H. Yamauchi and T. Kaneko: Jpn. J. Appl. Phys. 32 Suppl 32–33 (1993) 292.
  15. M. Gotoh, M. Ohashi, T. Kanomata and Y. Yamaguchi: Physica B 213–214 (1995) 306.
  16. T. Kanomata, M. Kikuchi and H. Yamauchi: J. Alloys. Comp. 414 (2006) 1.
  17. S. Ishida, S. Kashiwagi, S. Fujii and S. Asano: Physica B 210 (1995) 140.
  18. P. Larson, S. D. Mahanti and M. G. Kanatzidis: Phys. Rev. B 62 (2000) 12754.
  19. H. C. Kandpal, G. H. Fecher and G. Felser: J. Phys. D: Appl. Phys. 40 (2007) 1507.
  20. T. Hoshino, T. Mizuno, M. Asato and H. Fukushima: Mater. Trans. 42 (2001) 2206.
  21. T. Hoshino, M. Asato, R. Zeller and P. H. Dederichs: Phys. Rev. B 70 (2004) 094118.
  22. N. Fujima, M. Asato, R. Tamura and T. Hoshino: Mater. Trans. 48 (2007) 1734.
  23. I. Galanakis, P. H. Dederichs and N. Papanikolaou: Phys. Rev. B 66 (2002) 174429.
  24. M. Asato et al., in preparation.
  25. M. Asato, A. Settles, T. Hoshino, T. Asada, S. Blügel, R. Zeller and P. H. Dederichs: Phys. Rev. B 60 (1999) 5202.
  26. R. Zeller: Phys. Rev. B 55 (1997) 9400.
  27. R. Zeller, M. Asato, T. Hoshino, J. Zabloudil, P. Weinberger and P. H. Dederichs: Philos. Mag. B 78 (1998) 417.
  28. T. Asada and K. Terakura: Phys. Rev. B 47 (1993) 15992.
  29. P. H. Dederichs, H. Akai, S. Blügel, N. Stefanou and R. Zeller: Alloys Phase Stability, ed by G. M. Stocks and A. Gonis: (Series E: Applied Sciences 163, 1989) 377.
  30. M. Asato, H. Takahashi, T. Inagaki, N. Fujima, R. Tamura and T. Hoshino: Mater. Trans. 48 (2007) 1711.
  31. T. Hoshino, R. Zeller and P. H. Dederichs: J. Magn. Magn. Matter. 140–144 (1995) 113.
  32. T. Hoshino, R. Zeller, P. H. Dederichs and T. Asada: J. Magn. Magn. Matter. 156–158 (1996) 717.


© 2008 The Japan Institute of Metals
Comments to us :