Materials Transactions Online

Materials Transactions, Vol.48 No.05 (2007) pp.1001-1006
© 2007 The Japan Institute of Metals

Influence of Size and Number of Nanocrystals on Shear Band Formation in Amorphous Alloys

Junyoung Park, Yoji Shibutani, Masato Wakeda and Shigenobu Ogata

Department of Mechanical Engineering, Osaka University, Suita 565-0871, Japan

In this study, binary (copper and zirconium) amorphous metals with embedded nanosized crystal structures are subjected to uniaxial tension using molecular dynamics simulations to reveal the mechanism of shear band structure formation. The number and the size of the nanocrystals are chosen as the study parameters. The number of nanocrystals affects the stress-strain curve and shear band formation while the size of the nanocrystals does not significantly affect the results. As reported in the experimental work published so far, under tension coalescent voids are found in the shear bands or at the interface between crystalline and amorphous materials. The simulation results show that the number of shear bands under compressive loading is much larger than that under tensile loading. We also found that, even under compressive loading, the shear bands started from regions with enough free volume.

(Received 2007/1/11; Accepted 2007/2/22; Published 2007/4/25)

Keywords: amorphous alloy, shear band, nanocrystals, molecular dynamics, atomic strain, deformation participation ratio

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. W. Klement, R. H. Wilens and P. Duwez: Nature 187 (1960) 869–870.
  2. W. L. Johnson: MRS Bull 24 (1999) 42–56.
  3. C. A. Pampillo: J. Mater. Sci. 10 (1975) 1194–1227.
  4. F. Spapen: Acta Metall. 25 (1977) 407–415.
  5. H. J. Leamy, H. S. Chen and T. T. Wang: Met. Trans. 3 (1972) 699–708.
  6. J. J. Lewandowski and A. L. Greer: Nature 5 (2006) 15–18.
  7. C. C. Hays, C. P. Kim and W. L. Johnson: Phys. Rev. Lett. 84 (2000) 2901.
  8. C. Fan and A. Inoue: Appl. Phys. Lett. 77 (2000) 46–48.
  9. K. F. Yao, F. Ruan, Y. Q. Yang and N. Chen: Appl. Phys. Lett. 88 (2006) 122106-1–3.
  10. H. Kato, T. Hirano, A. Matsuo, Y. Kawamura and A. Inoue: Scripta Mater. 43 (2000) 503–507.
  11. J. Lee, Y. Kim, J. Ahn, H. Kim, S. Lee and B. Lee: Acta Mater. 52 (2004) 1525–1533.
  12. W. H. Jiang and M. Atzmon: Scripta Mater. 54 (2006) 333–336.
  13. Y. Shi and M. Falk: Appl. Phys. Lett. 86 (2005) 011914-1–3.
  14. Y. Shi and M. Falk: Phys. Rev. Lett. 95 (2005) 095502-1–4.
  15. Y. Shi and M. Falk: Phys. Rev. B 73 (2006) 214201-1–10.
  16. M. J. Demkowicz and A. S. Argon: Phys. Rev. B 72 (2005) 245205-1–16.
  17. M. Wakeda, Y. Shibutani, S. Ogata and J. Park: Intermetallics 15 (2007) 139–144.
  18. S. Kobayashi, K. Maeda and S. Takeuchi: J. Phys. Soc. Japan 48 (1980) 1147–1152.
  19. S. Kobayashi, K. Maeda and S. Takeuchi: Acta Metall. 28 (1980) 1641–1652.
  20. J. Park, Y. Shibutani, S. Ogata and M. Wakeda: Mater. Trans. 46 (2005) 2848–2855.
  21. T. Nagase and Y. Umakoshi: Scripta Mater. 48 (2003) 1237–1242.
  22. P. H. Mott, A. S. Argon and U. W. Suter: J. Comput. Phys. 101 (1992) 140–150.


© 2007 The Japan Institute of Metals
Comments to us :