Materials Transactions Online

Materials Transactions, Vol.46 No.08 (2005) pp.1897-1902
© 2005 Japan Foundary Engineering Society

Molten Metal Flow through Solid Network in Semi-Solid Al--Si Alloy

Nakornriab Nicom and Hiroyuki Nomura

Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan

Based on Darcy's equation, permeability was measured for the flow of molten metal through solid network in order to evaluate slurry fluidity in semi-solid casting process. An experimental apparatus is constructed to control the morphology of globular and dendrite structure for varied fraction of solid and applied pressure. Semi-solid AC4CH alloys with 7 mass% silicon content have been squeezed by argon gas at pressure of 0.50 MPa to force liquid phase through a filter. The fraction of solid is varied from 0 to as high as 0.55. Filtrate weight ratio and gauge pressure are shown to reach to each constant value with pressurizing time of 20 s. At low fraction of solid, permeability depends strongly upon solid morphology, i.e. dendrite structure yields the lower permeability due to large friction factor. Liquid movement through α solid phase network prevails under the formation of cake layer on the filter surface with most fractions of solid and with the fraction more than 0.33 for the dendritic and globular structure of the slurry, respectively. For the globular structure, on the other hand, liquid motion in the filter becomes important for fraction of solid less than 0.33.

(Received 2004/12/16; Accepted 2005/5/10; Published 2005/8/15)

Keywords: permeability, dendritic structure, globular structure, semi-solid, cake filtration, depth filtration

PDF(Free)PDF (Free) Table of ContentsTable of Contents

REFERENCES

  1. D. Apelian, M. C. Flemings and R. Mehrabian: Metall. Trans. 5 (1974) 2533--2537.
  2. T. Takahashi, M. Kudoh and K. Yodoshi: J. Mater. Soc. Metals 43 (1979) 1086--1091.
  3. D. R. Poirier and S. Ganesan: Mater. Sci. Eng. A 157 (1992) 113--123.
  4. D. R. Poirier and P. Ocansey: Mater. Sci. Eng. A 171 (1993) 231--240.
  5. F. A. Acosta G., A. H. Castillejos E., J. M. Almanza R. and A. Flores V.: Metall. Trans. B 26B (1995) 159--171.
  6. {Ø}. Nielsen, L. Arnberg, A. Mo and H. Thevik: Metall. Mater. Trans. A 30A (1999) 2455--2462.
  7. P. C. Carman: Flow of gases through porous media, (Butterworth Scientific, London, 1959) pp.~11--13.
  8. N. Streat and F. Weinberg: Metall. Trans. B, 7 (1976) 417--423.
  9. R. Nasser-Rafi, D. Deshmukh and D. R. Poirier: Metall. Trans. A 16 (1985) 2263--2271.
  10. D. R. Poirier: Metall. Trans. B 18 (1987) 245--255.
  11. K. Murakami and T. Okamoto: Acta Metall. 32 (1984) 1741--1744.
  12. Foseco Japan Ltd: Metal filter data, Koube, Japan.
  13. J. Bear and A. Verruijt: Modeling groundwater flow and pollution, (D. Reidel Publishing Company, 1987) pp.~27--52.
  14. N. de Nevers: Fluid mechanics for chemical engineers, (McGraw-Hill, Inc., 1991) pp.~411--457.
  15. L. Orgeas, J.-P. Gabathuler, Th. Imwinkelried, Ch. Paradies and M. Rappaz: Modelling Simul. Mater. Sci. Eng. 11 (2003) 553--574.
  16. S. Mauran, L. Rigaud and O. Coudevylle: Transport in Porous Media 43 (2001) 355--376.


[JIM HOME] [JOURNAL ARCHIVES]

© 2002 The Japan Institute of Metals
Comments to us : editjt@jim.or.jp