Materials Transactions Online

Materials Transactions, Vol.46 No.08 (2005) pp.1833-1838
© 2005 The Japan Institute of Metals

An EBSD and TEM Study on the Microstructural Evolution of in situ Synthesized (TiB+TiC)/Ti Matrix Composites during Superplastic Deformation

Min-min Wang1,, Wei-jie Lu1, Di Zhang1,, Ji-ning Qin1, Tongxiang Fan1, Bo Ji1,2, Feng Zhu2 and Sikai Ji3

1State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
2Shanghai No.~5 Steel Co. Ltd., Bao Steel Group, Shanghai 200940, P. R. China
3R&D Testing Center, Baoshan Iron & Steel Co. Ltd., Shanghai 201900, P. R. China

Microstructures of in situ synthesized (TiB+TiC)/Ti matrix composites after superplastic deformation at 980°C with a strain rate of 5 × 10-3 s-1 have been studied. Optical microscope (OM) and scanning electron microcioy (SEM) observations indicate that the mean grain size decreased. Electron back-scattered diffraction (EBSD) and transmission electron microcopy (TEM) observations reveal that the density of sub-grain boundaries and high angle grain boundaries increased during superplastic deformation, clearly indicating that dislocation sliding and climbing are important processes during superplastic deformation. The experiment results indicate the superplastic deformation is controlled by grain boundary sliding and dislocation motion, which is consistent with the result deduced from activation energy.

(Received 2005/3/23; Accepted 2005/6/6; Published 2005/8/15)

Keywords: titanium alloy matrix composite, electron back-scattered diffraction (EBSD), optical microscope, superplastic deformation mechanism

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. S. Ranganath: J. Mater. Sci. 32 (1997) 1--16.
  2. W. J. Lu, D. Zhang, X. N. Zhang, R. J. Wu, Y. J. Bian and P. W. Fang: J. Mater. Eng. 8 (1999) 9--11.
  3. W. J. Lu, D. Zhang, X. N. Zhang, R. J. Wu, T. Sakata and H. Mori: Scr. Mater. 44 (2001) 1069--1075.
  4. H. T. Tsang, C. G. Chao and C. Y. Ma: Scr. Mater. 35 (1996) 1007--1012.
  5. H. C. Man, S. Zhang, F. T. Cheng and T. M. Yue: Scr. Mater. 44 (2001) 2801--2807.
  6. M. Kobayashi, S. Ochiai, K. Funami, C. Ouchi and S. Suzuki: Mater. Sci. Forum. 170--172 (1994) 549--554.
  7. S. J. Zhu, D. Mukherji, W. Chen, Y. X. Lu, Z. G. Wang and R. P. Wahi: Mater. Sci. Eng. A 256 (1998) 301--307.
  8. S. Ranganath and R. S. Mishira: Acta Mater. 44 (1996) 927--935.
  9. C. Schuh and D. C. Dunand: Int. J. Plasticity. 17 (2001) 317--340.
  10. C. Schuh and D. C. Dunand: Scr. Mater. 40 (1999) 1305--1312.
  11. D. C. Dunand and C. M. Bedell: Acta Mater. 44 (1996) 1063--1076.
  12. C. Schuh and D. C. Dunand: Scr. Mater. 45 (2001) 631--638.
  13. T. G. Nieh, C. A. Henshall and J. Wadsworth: Scr. Matall. 18 (1984) 1405--1408.
  14. D. L. Lin, A. D. Shan and M. Chen: Intermetallics 4 (1996) 489--496.
  15. D. L. Lin, D. Q. Li and Y. Liu: Intermetallics 6 (1998) 243--256.
  16. M. M. Wang, W. J. Lu, J. N. Qin, D. Zhang, B. Ji and F. Zhu: Scr. Mater. 53 (2005) 265--270.
  17. O. A. Kaibyshev: Superplasticity of alloys, (Intermetallics and Ceramics, Springer, Berlin, 1992).
  18. V. N. Perevezentsev, V. V. Rybin and V. N. Chuvil'deev: Acta Metal. Mater. 40 (1992) 887--894.
  19. O. A. Kaibyshev, A. I. Pshenichniuk and V. V. Astanin: Acta Mater. 46 (1998) 4911--4916.
  20. X. Zhang and M. J. Tan: Scr. Mater. 38 (1998) 827--831.


© 2002 The Japan Institute of Metals
Comments to us :