Materials Transactions Online

Materials Transactions, Vol.46 No.08 (2005) pp.1810-1813
© 2005 The Japan Institute of Metals

Composition-Dependent Thermoelectric Properties of PbTe Doped with Sb2Te3

Pinwen Zhu1,2,, Yoshio Imai1, Yukihiro Isoda1, Yoshikazi Shinohara1, Xiaopeng Jia2 and Guangtian Zou2

1Eco-material Research Center, National Institute for Materials Science, Tsukuba 305-0047, Japan
2National Lab of Superhard Materials, Jilin University, Changchun 130012, P. R. China

Although there are many reports on PbTe--SnTe and Bi2Te3--Sb2Te3 systems with improved thermoelectric performance due to reduced lattice thermal conductivity, only few experimental data exist on PbTe--Sb2Te3 system. In this report, the composition-dependent thermoelectric properties of PbTe doped with Sb2Te3 have been studied at room-temperature. It is worth noting that the lattice thermal conductivity is only about 1 W/K ⋅ m as the contents of Sb2Te3 is larger than 0.8 mol%. In addition, the figure of merit shows a maximum value of 1.03 × 10-3 K-1 with the content of Sb2Te3 at 0.8 mol% which is the highest value obtained in doped bulk PbTe samples and is several times higher than that of PbTe containing other dopants with small grain sizes. This confirms that Sb2Te3 is one of the best dopants for PbTe to enhance its thermoelectric performance.

(Received 2005/4/14; Accepted 2005/6/15; Published 2005/8/15)

Keywords: Lead telluride, Antimony telluride, thermoelectric properties, thermal conductivity

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. C. Wood: Rep. Prog. Phys. 51 (1988) 459--539.
  2. Y. Shinohara, Y. Imai, Y. Isoda, I. A. Nishida, H. T. Kaibe and I. Shioda: Proc. 16th Int. Conf. TEs (ICT'97), Dresden, IEEE, (1998), pp. 379--381.
  3. F. J. DiSalvo: Science 285 (1999) 703--706.
  4. K. Kishimoto and T. Koyanagi: J. Appl. Phys. 92 (2002) 2544--2549.
  5. K. Kishimoto, K. Yamamoto and T. Koyanagi: Jpn. J. Appl. Phys. 42 (2003) 501--508.
  6. D. M. Rowe and C. M. Bhandari: Appl. Phys. Lett. 47 (1985) 255--257.
  7. P. W. Zhu, X. Jia, H. Y. Chen, W. L. Guo, L. X. Chen, D. M. Li, H. Ma, G. Z. Ren and G. T. Zou: Solid State Commun. 123 (2002) 43--47.
  8. P. W. Zhu, Y. Imai, Y. Isoda, Y. Shinohara, X. P. Jia, G. Z. Ren and G. T. Zou: Mater. Trans. 45 (2004) 3102--3105.
  9. B. K. Godwal, A. Jayarmnan, S. Meenakashi, R. S. Rao, S. K. Sikka and V. Vijayakumar: Phys. Rev. B 57 (1998) 773--776.
  10. G. D. Mahan: Solid State Phys. 51 (1998) 81--157.
  11. E. I. Rogacheva and S. A. Laptev: Inorg. Mater. 20 (1984) 1160--1162.
  12. P. W. Zhu, Y. Imai, Y. Isoda, Y. Shinohara, X. P. Jia and G. T. Zou: Mater. Trans. 46 (2005) 761--764.
  13. K. Uemura and I. A. Nishida: NIkkan-Kogyo, Tokyo, (1988) pp.~180--197.
  14. M. Orihashi, Y. Noda, H. T. Kaibe and I. A. Nishida: Mater. Trans. JIM 39 (1998) 672--678.
  15. K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis and M. G. Kanatzidis: Science 303 (2004) 818--821.


© 2002 The Japan Institute of Metals
Comments to us :