Materials Transactions Online

Materials Transactions, Vol.46 No.08 (2005) pp.1749-1752
© 2005 The Japan Institute of Metals

Microstructure Stability and Creep Strength in a Die-Cast AX52 Magnesium Alloy

Yukako Mori, Yoshihiro Terada and Tatsuo Sato

Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, Tokyo 152-8552, Japan

Superior creep strength of a heat resistant AX52 magnesium alloy is ascribed to the grain boundary eutectic Al2Ca phase covering the primary α -Mg grains. The eutectic phase is stable in morphology at temperatures below 473 K, while it collapses during long term exposure at temperatures higher than 473 K. The microstructural change of the alloy during high temperature exposure is characterized by the decrease in the grain boundary coverage by the eutectic phase. The creep strength of the alloy decreases with the decrease in the grain boundary coverage, and the correlation between the creep strength and the grain boundary coverage is discussed.

(Received 2005/3/14; Accepted 2005/5/17; Published 2005/8/15)

Keywords: magnesium alloy, die-cast, creep, microstructure, grain boundary coverage

PDF(Free)PDF (Free) Table of ContentsTable of Contents

REFERENCES

  1. B. L. Mordike and T. Ebert: Mater. Sci. Eng. A 302 (2001) 37--45.
  2. G. S. Cole: Mater. Sci. Forum 419--422 (2003) 43--50.
  3. S. Das: JOM 55 (2003) 22--26.
  4. P. Bakke and H. Westengen: Adv. Eng. Mater. 5 (2003) 879--885.
  5. H. Gjestland, G. Nussbaum, G. Regazzoni, O. Lohne and O. Bauger: Mater. Sci. Eng. A 134 (1991) 1197--1200.
  6. M. O. Pekguleryuz and J. Renaud: Magnesium Technology 2000, ed. by H. I. Kaplan, J. Hryn and B. Clow (TMS, Warrendale, 2000) pp.~279--284.
  7. A. A. Luo, M. P. Balogh and B. R. Powell: Metall. Mater. Trans. A 33A (2002) 567--574.
  8. Y. Terada, N. Ishimatsu, R. Sota, T. Sato and K. Ohori: Mater. Sci. Forum 419--422 (2003) 459--464.
  9. D. Wenwen, S. Yangshan, M. Xuegang, X. Feng, Z. Min and W. Dengyun: Mater. Sci. Eng. A 356 (2003) 1--7.
  10. A. A. Luo: Mater. Sci. Forum 419--422 (2003) 57--66.
  11. M. O. Pekguleryuz and A. A. Kaya: Adv. Eng. Mater. 5 (2003) 866--878.
  12. H. Westengen: Science and Engineering of Light Metals, ed. by K. Hirano, H. Oikawa and K. Ikeda (The Japan Institute of Light Metals, Tokyo, 1991) pp.~77--84.
  13. Y. Terada, N. Ishimatsu, Y. Mori and T. Sato: Mater. Trans. 46 (2005) 145--147.
  14. Y. Terada, R. Sota, N. Ishimatsu, T. Sato and K. Ohori: Metall. Mater. Trans. A 35A (2004) 3029--3032.
  15. K. Ozturk, Y. Zhong, A. A. Luo and Z.-K. Liu: JOM 55 (2003) 40--44.
  16. A. Suzuki, N. D. Saddock, J. W. Jones and T. M. Pollock: Scr. Mater. 51 (2004) 1005--1010.
  17. M. Suzuki, T. Tsukeda, K. Saito and K. Maruyama: JSPS Report of the 123rd Committee on Heat-Resisting Materials and Alloys 45 (2004) 255--262.
  18. T. Matsuo, K. Nakajima, Y. Terada and M. Kikuchi: Mater. Sci. Eng. A 146 (1991) 261--272.
  19. J. S. Zhang, P. E. Li, W. X. Chen and J. Z. Jin: Scr. Metall. 23 (1989) 547--551.
  20. P. Shahinian and J. R. Lane: Trans. ASM 45 (1953) 177--199.
  21. F. Garofalo, W. F. Domis and F. von Gemmingen: Trans. Met. Soc. AIME 230 (1964) 1460--1467.
  22. T. Nakanishi, N. Matsumoto and O. Kawada: J. Jpn. Inst. Met. 41 (1977) 263--269.
  23. Y. Kondo, T. Matsuo, T. Shinoda and R. Tanaka: Tetsu-to-Hagane 65 (1979) 896--905.
  24. Y. Terada, T. Matsuo and M. Kikuchi: Aspects of High Temperature Deformation and Fracture in Crystalline Materials, ed. by Y. Hosoi, H. Yoshinaga, H. Oikawa and K. Maruyama (The Japan Institute of Metals, Sendai, 1993) pp.~27--34.
  25. Y. Terada, N. Ishimatsu, R. Sota and T. Sato: Acta Mater. submitted.
  26. R. T. DeHoff and F. N. Rhines: Quantitative Microscopy, (McGraw-Hill, New York, 1968).


[JIM HOME] [JOURNAL ARCHIVES]

© 2002 The Japan Institute of Metals
Comments to us : editjt@jim.or.jp