Materials Transactions Online

Materials Transactions, Vol.45 No.07 (2004) pp.2137-2143
© 2004 The Japan Institute of Metals

Atomic and Electronic Structures of Ni/YSZ(111) Interface

Takeo Sasaki1,, Katsuyuki Matsunaga2, Hiromichi Ohta3, Hideo Hosono3, Takahisa Yamamoto4 and Yuichi Ikuhara2

1Department of Materials Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
2Institute of Engineering Innovation, The University of Tokyo, Tokyo 113-8656, Japan
3Hosono Transparent ElectroActive Materials, ERATO, Japan Science and Technology Corporation, Kawasaki 213-0012, Japan
4Department of Advanced Materials Science, The University of Tokyo, Tokyo 113-8656, Japan

Thin Ni films were deposited on the (111) surface of YSZ at 1073 K by a pulsed laser deposition technique. The interfacial atomic structure of Ni/YSZ was investigated by high-resolution transmission electron microscopy (HRTEM). It was found that Ni was epitaxially oriented to the YSZ surface, and the following orientation relationship (OR) was observed: (111)Ni||;(111)YSZ, [110]Ni||;[110]YSZ. Geometrical coherency of the Ni/YSZ system was also evaluated by the coincidence of reciprocal lattice points (CRLP) method. It was found that the most coherent OR predicted by CRLP method was (705)Ni||;(111)YSZ, [010]Ni||;[110]YSZ, which was not consistent with the experimentally observed OR. To understand the detailed atomic structure, HRTEM image simulations were performed. However, simulated images based on both O-terminated and Zr-terminated interface models were quite similar to the experimental image, and thus it was hard to determine which model is comparable with the actual interface only by the HRTEM image simulations. In order to clarify the termination layer at the interface, electronic structures of the Ni/YSZ interface were investigated by electron energy-loss spectroscopy. It was found that significant differences were observed in O-K edge spectra between the interface and the YSZ crystal interior, and the spectrum from the interface showed similar features to the reference spectrum of bulk NiO. This indicates that the Ni-O interaction occurs at the interface to terminate the oxygen {111} plane of YSZ at the Ni/YSZ interface. In addition, the density of Ni-O bonds across the interface in the experimental OR was larger than that in the most coherent OR predicted by CRLP method, which also suggests that the on-top Ni-O bonds stabilize the Ni/YSZ(111) interface.

(Received 2004/1/30; Accepted 2004/3/11)

Keywords: nickel/yttria-stabilized zirconia interface, atomic structure, electronic structure, high-resolution transmission electron microscopy, electron energy-loss spectroscopy, coincidence of reciprocal lattice points method

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. P. K. Wright and A. G. Evans: Curr. Opin. Solid State Mater. Sci. 4 (1999) 255--265.
  2. A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier and F. S. Pettit: Prog. Mater. Sci. 46 (2001) 505--553.
  3. N. Q. Minh: J. Am. Ceram. Soc. 76 (1993) 563--588.
  4. T. Fukui, S. Ohara and K. Mukai: Electrochem. Solid State Lett. 1 (1998) 120--122.
  5. A. Christensen and E. A. Carter: J. Chem. Phys. 114 (2001) 5816--5831.
  6. X. Han, Y. Zhang, S. Gong and H. Xu: Key Eng. Mater. 224--226 (2002) 355--358.
  7. X. Han, Y. Zhang and H. Xu: Chem. Phys. Lett. 378 (2003) 269--272.
  8. J. I. Beltrán, S. Gallego, J. Cerdá and M. C. Muñoz: J. Eur. Cera. Soc. 23 (2003) 2737--2740.
  9. J. I. Beltrán, S. Gallego, J. Cerdá, J. S. Moya and M. C. Muñoz: target="_blink">Phys. Rev. B. 68 (2003) 075401.
  10. E. C. Dickey, X. Fan and S. J. Pennycook: Acta Mater. 47 (1999) 4061--4068.
  11. E. C. Dickey, Y. M. Bagiyono, G. D. Lian, S. B. Sinnott and T. Wagner: Thin Solid Films. 372 (2000) 37--44.
  12. J. M. Rigsbee and H. I. Aaronson: Acta Metall. 27 (1979) 351--363.
  13. R. W. Balluffi, A. Brokman and A. H. King: Acta Metall. 30 (1982) 1453--1470.
  14. Y. Ikuhara and P. Pirouz: Mater. Sci. Forum. 207--209 (1996) 121--124.
  15. R. Kilaas: the 49th EMSA Meeting, ed. by G.W. Bailey, (San Francisco Press, San Francisco, 1991) pp.~528--529.
  16. T. Sasaki, K. Matsunaga, H. Ohta, H. Hosono, T. Yamamoto and Y. Ikuhara: J. Soc. Mater. Sci. Japan. 52 (2003) 555--559.
  17. T. Sasaki, K. Matsunaga, H. Ohta, H. Hosono, T. Yamamoto and Y. Ikuhara: Sci. Technol. Adv. Mater. 4 (2003) 575--584.
  18. Y. Ikuhara and P. Pirouz: Ultramicroscopy 52 (1993) 421--428.
  19. Y. Ikuhara, P. Pirouz, A. H. Heuer, S. Yadavallis and C. P. Flynn: Philos. Mag. A. 70 (1994) 75--97.
  20. Y. Ikuhara and P. Pirouz: Micros. Res. Techniq. 40 (1998) 206--241.
  21. Y. Ikuhara: J. Ceram. Soc. JPN. 109 (2001) S110--S120.
  22. H. Kurata, E. Lefèvre, C. Colliex and R. Brydson: Phys. Rev. B. 47 (1993) 13763--13768.
  23. N. C. Hernández and J. F. Sanz: J. Phys. Chem. B 106 (2002) 11495--11500.
  24. R. Benedek, D. N. Seidman, M. Minkoff, L. H. Yang and A. Alavi: Phys. Rev. B 60 (1999) 16094--16102.
  25. P. W. Tasker and A. M. Stoneham: J. Chimie. Phys. 84 (1987) 149--155.


© 2002 The Japan Institute of Metals
Comments to us :