Materials Transactions Online

Materials Transactions, Vol.45 No.04 (2004) pp.1124-1131
© 2004 The Japan Institute of Metals

Effects of Pore Morphology and Bone Ingrowth on Mechanical Properties of Microporous Titanium as an Orthopaedic Implant Material

Huanlong Li1,, Scott M. Oppenheimer2,, Samuel I. Stupp2, David C. Dunand2 and L. Catherine Brinson1

1Department of Mechanical Engineering, Northwestern University, Evanston, IL 60201, U.S.A.
2Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA

Successful bone formation which leads to functional osseointegration is determined by the local mechanical environment around bone-interfacing implants. In this work, a novel porous titanium material is developed and tested and then impact of porosity on mechanical properties as a function of bone ingrowth is studied numerically. A superplastic foaming technique is used to produce CP-Ti material with rounded, interconnected pores of 50% porosity; the pore size and morphology is particularly suitable for bone ingrowth. In order to understand the structure-property relations for this new material, a numerical simulation is performed to study the effect of the porous microstructure and bone ingrowth on the mechanical properties. Using ABAQUS, we create two-dimensional representative microstructures for fully porous samples, as well as samples with partial and full bone ingrowth. We then use the finite element method to predict the macroscopic mechanical properties of the foam, e.g., overall Young's modulus and yield stress, as well as the local stress and strain pattern of both the titanium foam and bone inclusions. The strain-stress curve, stress concentrations and stress shielding caused by the bone-implant modulus mismatch are examined for different microstructures in both elastic and plastic region. The results are compared with experimental data from the porous titanium samples. Based on the finite element predictions, bone ingrowth is predicted to dramatically reduce stress concentrations around the pores. It is shown that the morphology of the implants will influence both macroscopic properties (such as modulus) and localized behavior (such as stress concentrations). Therefore, these studies provide a methodology for the optimal design of porous titanium as an implant material.

(Received 2003/10/27; Accepted 2003/12/24)

Keywords: porous titanium, bone implant, finite element analysis, mechanical properties, bone ingrowth, stress shielding, morphology

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. M. Long and H. J. Rack: Biomaterials 19 (1998) 1621--1639.
  2. K. D. Riew and J. M. Rhee: Clinical Orthopaedics and Related Research, 394 (2002) 47--54.
  3. J. D. Bobyn, R. M. Pilliar, H. U. Cameron and G. C. Weatherly: Clinical Orthopaedics and Related Research 150 (1980) 263--270.
  4. T. Mori and K. Tanaka: Acta Metall. 21 (1973) 571--574.
  5. J. Aboudi: Mechanics of Composite Materials-A Unified Micromechanical Approach, Elsevier, 1991.
  6. L. Gibson and M. Ashby: Cellular Solids: structure and Properties (Cambridge University Press, 1997).
  7. T. Christman, A. Needleman and S. Suresh: Acta Metall. 37 (1989) 3029--3050.
  8. J. Llorca, A. Needleman and S. Suresh: Acta Metall. Et Mater. 39 (1991) 2317--2335.
  9. H. Shen and C. J. Lissenden: Mater. Sci. and Eng. A338 (2002) 271--281.
  10. M. Ostoja-Starzewski, P. Y. Sheng and I. Jasiuk: Engineering Fracture Mechanics 58 (1997) 581--606.
  11. S. Moorthy and S. Ghosh: Inter. J. Numerical Methods Eng. 39 (1996) 2363--2398.
  12. S. L. Thelen: Titanium Foam for Use in Bone Implants: Microstructure Effects on effective Properties and Local States, in Mechanical Engineering. June 2000, Northwestern University: Evanston, Illinois.
  13. S. L. Thelen, F. Barthelat and C. L. Brinson: Journal of Biomedical Materials Research, (2003).
  14. Y. Benveniste: Mech. Matls. 6 (1987) 147--157.
  15. E. D. Spoerke, N. G. Murray, H. Li, C. L. Brinson, D. C. Dunand and S. I. Stupp: Nature Materials, (manuscript in preparation, 2003).
  16. N. Taylor, D. C. Dunand and A. Mortensen: Acta Metall. Mater. 41 (1993) 955--965.
  17. I. H. Oh, N. Nomura and S. Hanada: Mater. Trans. 43 (2002) 443--446.
  18. I. H. Oh, N. Nomura, N. Masahashi and S. Hanada: Scr. Mater. 49 (2003) 1197--1202.
  19. M. Bram, C. Stiller, H. P. Buchkremer, D. Stover and H. Baur: Adv. Eng. Mater. 2 (2000) 196--199.
  20. C. E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino and T. Asahina: Scr. Mater. 45 (2001) 1147--1153.
  21. M. W. Kearns, P. A. Blenkinsop, A. C. Barber and T. W. Farthing: Metals and Materials 3 (1987) 85--88.
  22. D. T. Queheillalt, B. W. Choi, D. S. Schwartz and H. N. G. Wadley: Metall. Mater. Trans. A 31 (2000) 261--273.
  23. D. M. Elzey and H. N. G. Wadley: Metall. Mater. Trans. A 30 (1999) 2689--2699.
  24. D. M. Elzey and H. N. G. Wadley: Acta Mater. 49 (2001) 849--859.
  25. N. G. Davis, J. Teisen, C. Schuh and D. C. Dunand: J. Mater. Res. 16 (2001) 1508--1519.
  26. N. G. D. Murray and D. C. Dunand: Compos. Sci. Technology 63 (2003) 2311--2316.
  27. N. G. D. Murray, C. A. Schuh and D. C. Dunand: Scr. Mater. 49 (2003) 879--883.
  28. A. International: Atlas of stress-strain curves. 2nd ed. (Materials Park, OH: ASM International, 2002).
  29. D. B. Freels, S. Kilpatrick, E. S. Gordon and W. G. Ward: Clinical Orthopaedics and Related Research 394 (2002) 315--322.
  30. J. Klawitter and S. Hulbert: J. Biomed. Mater. Res. 6 (1971) 161--229.
  31. S. Simske, R. Ayers and T. Bateman: Mater. Sci. Forum 250 (1997) 151--182.


© 2002 The Japan Institute of Metals
Comments to us :