Materials Transactions Online

Materials Transactions, Vol.43 No.9 (2002) pp.2173-2176
© 2002 The Japan Institute of Metals

Oxidation Mechanism of Copper at 623-1073 K*

Yongfu Zhu, Kouji Mimura and Minoru Isshiki

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan

In reviewing the results reported for copper oxidation at intermediate temperatures from 573 to 1173 K, the oxidation mechanism at the lower part of this temperature range and the reason for the change in activation energy with decreasing the temperature remain unclear. To make it clear, copper oxidation is studied at 623-1073 K under 0.1 MPa O2 using a commercial 99.9999% pure copper. The oxidation kinetics is essentially parabolic, and the activation energy decreases from 111 kJ/mol at 873-1073 K to 40 kJ/mol at 623-773 K. The growth of Cu2O is predominant and it obeys the parabolic law at 623-773 K, as well as the case at 873-1073 K. In addition to grain boundary diffusion of copper along the fine and thin columnar Cu2O grains, the non-protective CuO whisker layer, which cannot keep the oxygen potential constant at the Cu2O/CuO interface, should be responsible for the decrease in the activation energy at 623-773 K.

(Received April 24, 2002; Accepted June 12, 2002)

Keywords: copper, oxidation, intermediate temperatures, activation energy, grain boundary diffusion

*This Paper was Presented at the Spring Meeting of the Japan Institute of Metals, held in Tokyo, March 30, 2002.

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. O. Kubaschewski, Oxidation of Metals and Alloys, (Academic Press, NY, 1962) 70.
  2. R. F. Tylecote: J. Inst. Metals 78 (1950-51) 259-573.
  3. G. Valensi: Pittsburgh Internat. Conf. on Surface Reactions, (1948) 156.
  4. R. F. Tylecote: J. Inst. Metals 78 (1950-51) 327-623.
  5. J. H. Park and K. Natesan: Oxid. Metals 39 (1993) 411-434.
  6. D. W. Bridges, J. P. Baur, G. S. Baur and W. M. Fassel: J. Electrochem. Soc. 103 (1956) 475-478.
  7. J. Paidassi: Acta Metall. 6 (1958) 216-219.
  8. C. Wagner and K. Grunewald: Z. Phys. Chem. B40 (1938) 197.
  9. Y. F. Zhu, K. Mimura and M. Isshiki: J. Electrochem. Soc. in consideration.
  10. A. Ronnqüist: J. Inst. Metals 91 (1962-1963) 89-94.
  11. R. F. Tylecote: Metallurgia 53 (1956) 191-197.
  12. S. Matsunaga and T. Hamma: Oxidation of Metals 10 (1976) 361-376.
  13. S. Mrowec and A. Stoklosa: Werkst. Korros. 21 (1970) 934-944.
  14. Y. Zhu, K. Mimura, Y. Ishikawa and M. Isshiki: Journal of the JCBRA 40 (2001) 96-100.
  15. D. Caplan, M. M. Graham and M. Cohen: J. Electrochem. Soc. 119 (1972) 1265.
  16. N. N. Khoi, W. W. Smeltzer and J. D. Embury: J. Electrochem. Soc. 122 (1975) 1495-1503.
  17. W. McKewan and W. M. Fassell: J. Metals (1953) 1127-1130.
  18. D. W. Bridges, J. P. Baur, G. S. Baur and W. M. Fassell: J. Electrochem. Soc. 103 (1956) 475-478.


© 2002 The Japan Institute of Metals
Comments to us :