Materials Transactions Online

Materials Transactions, Vol.43 No.7 (2002) pp.1430-1434
Special Issue on Grain Boundaries, Interfaces, Defects and Localized Quantum Structures in Ceramics
© 2002 The Japan Institute of Metals

Ab-initio Calculation of Si-K and Si-L ELNES Edges in an Extended Inactive Defect Model of Crystalline Silicon

Yu Chen1,*, Shang-Di Mo1, Masanori Kohyama2, Hideo Kohno3, Seiji Takeda3 and Wai-Yim Ching1,**

1Department of Physics, University of Missouri-Kansas City, Kansas City, MO, 64110 USA
2Interface Science Research Group, Special Division of Green Life Technology,
National Institute of Advanced Industrial Science and Technology, Ikeda 563-8577, Japan
3Department of Physics, Osaka University, Toyonaka 560-0043, Japan

The Si-K and Si-L2,3 edges of the electron energy-loss near-edge (ELNES) spectra of a model of an extended inactive defect in Si with no dangling bonds were calculated using an ab-initio method which includes the electron-hole interaction. In this method, atom-by-atom excitation is possible. The calculated results are discussed in the context of the subtle structural differences in the local atomic environment. Comparison of the results with measured data shows satisfactory agreement. The method can be applied to other more complicated defective systems such as grain boundaries and interfaces for effective materials characterization.

(Received February 4, 2002; Accepted April 12, 2002)

Keywords: electron energy-loss near edge spectroscopy, ab-initio calculations, core-hole-electron interaction, silicon defect model, grain boundary, interface, supercell

*Graduate Student, University of Missouri-Kansas City, USA.
**Corresponding author:

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. See for example, Transmission Electron Energy-loss Spectrometry in Materials Sciences, ed. by M. M. Disko, C. C. Ahn and B. Fultz (Minerals, Metals and Materials Society, Warrendale, PA, 1992).
  2. P. Rez, J. R. Alvarez and C. Pickard: Ultramicroscopy 78 (1999) 175-183.
  3. J. J. Rehr and R. C. Albers:
  4. I. Tanaka, J. Kawai and H. Adachi: Phys. Rev. B52 (1995) 11733-11739[APS].
  5. I. Tanaka and H. Adachi: Phys. Rev. B54 (1996) 4604-4608[APS].
  6. M. A. Gülgün, W. Y. Ching, Y.-N. Xu and M. Rühle: Philos. Mag. B79 (1999) 921-940.
  7. S. Köstmeier and C. Elsässer: Phys. Rev. B60 (1999) 14025-14034[APS].
  8. S. D. Mo and W. Y. Ching: Phys. Rev. B62 (2000) 7901-7907[APS].
  9. W. Y. Ching, S.-D. Mo, Y. Chen and P. Rulis: J. Amer. Ceram. Soc. [1] (2002) 75-80.
  10. S. D. Mo and W. Y. Ching: Appl. Phys. Lett. 78 (2001) 3809-3811[AIP].
  11. Y.-N. Xu, Y. Chen, S.-D. Mo and W. Y. Ching: Phys. Rev. B. (in press).
  12. S. Takeda: Jpn. J. Appl. Phys. 30 (1991) L639-641.
  13. M. Kohyama and S. Takeda: Phys. Rev. B51 (1995) 13111-13119[APS].
  14. H. Kohno, T. Mabuchi, S. Takeda, M. Kohyama, M. Terauchi and M. Tanaka: J. Electron. Microscopy 47(4), (1998) 311-317.
  15. H. Kohno, T. Mabuchi, S. Takeda, M. Kohyama, M. Terauchi and M. Tanaka: Phys. Rev. B58 (1998) 10338-10342[APS].
  16. W. Y. Ching: J. Am. Ceram. Soc. 73 (1990) 3135-3159.
  17. R. S. Mulliken: J. Am. Chem. Soc. 23 (1955) 1833-1840.
  18. P. Kroll, A. Greniner and R. Riedel: Mater. Res. Soc. Symp. Proc. Vol. 437 (1996) 225-229.
  19. M. Kohyama and R. Yamamoto: Phys. Rev. B50 (1994) 8502-8522[APS].
  20. A. P. Sutton and R. W. Balluffi: Interfaces in Crystalline Materials, (Clarenden Press, Oxford UK, 1995).
  21. R. H. French, H. Müllejans, D. J. Jones, G. Guscher, R. M. Cannon and M. Rühle: Acta. Mater. 46 (1998) 2271-2287.


© 2002 The Japan Institute of Metals
Comments to us :